Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 087502    DOI: 10.1088/1674-1056/19/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Micromagnetic simulation on the dynamic susceptibility spectra of cobalt nanowires arrays: the effect of magnetostatic interaction

Chen Wen-Bing(陈文兵), Han Man-Gui(韩满贵), Zhou Hao(周浩), Ou Yu(欧雨), and Deng Long-Jiang(邓龙江)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Micromagnetic simulations have been performed to obtain the dynamic susceptibility spectra of 4×4 cobalt nanowire arrays with different spatial configurations and geometries. The susceptibility spectra of isolated wires have also been simulated for comparison purposes. It is found that the susceptibility spectrum of nanowire array bears a lot of similarities to that of an isolated wire, such as the occurrences of the edge mode and the bulk resonance mode. The simulation results also reveal that the susceptibility spectrum of nanowire array behaves like that of single isolated wire as the interwire distance grows to an extent, which is believed due to the decrease of magnetostatic interaction among nanowires, and can be further confirmed by the static magnetic hysteresis simulations. In comparison with single nanowire, magnetostatic interaction may increase or decrease the resonance frequencies of nanowire arrays assuming a certain interwire distance when the length of array increases. Our simulation results are also analysed by employing the Kittel equation and recent theoretical studies.
Keywords:  micromagnetic simulation      dynamic susceptibility      nanowire array      magnetostatic interaction  
Received:  10 May 2009      Revised:  02 March 2010      Accepted manuscript online: 
PACS:  75.40.Gb (Dynamic properties?)  
  61.46.-w (Structure of nanoscale materials)  
  75.10.-b (General theory and models of magnetic ordering)  
  75.40.Mg (Numerical simulation studies)  
  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60701016) and the National Natural Science Foundation of China–the Royal Society of United Kingdom International Jointed Project (Grant No. 60911130130).

Cite this article: 

Chen Wen-Bing(陈文兵), Han Man-Gui(韩满贵), Zhou Hao(周浩), Ou Yu(欧雨), and Deng Long-Jiang(邓龙江) Micromagnetic simulation on the dynamic susceptibility spectra of cobalt nanowires arrays: the effect of magnetostatic interaction 2010 Chin. Phys. B 19 087502

[1] Xiao J J, Sun C, Xue D S and Li F S 2001 Acta Phys. Sin. 50 1605 (in Chinese)
[2] Guo Z Z and An C H 2008 Chin. Phys. Lett. 12 4406
[3] Gao J H, Sun D L, Zhan Q F, He W and Cheng Z H 2007 Phys. Rev. B 75 064421
[4] Hwang M, Abraham M C, Savas T A, Smith H I, Ram R J and Ross C A 2000 J. Appl. Phys. 87 5108
[5] Nielsch K, Wehrspohn R B, Barthel J, Kirschner J, G"osele U, Fischer S F and Kronmüller H 2001 Appl. Phys. Lett. 79 1360
[6] Ross C A, Hwang M, Shima M, Cheng J, Farhoud Y M, Savas T A, Smith H I, Schwarzacher W, Ross F M, Redjdal M and Humphrey F B 2002 Phys. Rev. B 65 144417
[7] Shima M, Hwang M and Ross C A 2003 J. Appl. Phys. 93 3440
[8] Kartopu G, Yalc'hi n O, Es-Souni M and Bacsaran A C 2008 J. Appl. Phys. 103 093915
[9] Gao B, Qiao L, Wang J B, Liu Q F, Li F S, Feng J and Xue D S 2008 J. Phys. D: Appl. Phys. 41 235005
[10] Qiao L, Han X H, Gao B, Wang J B, Wen F S and Li F S 2009 J. Appl. Phys. 105 053911
[11] Ledieu M, Schoenstein F, Le Gallou J H, Valls O, Queste S, Duverger F and Acher O 2003 J. Appl. Phys. 93 7202
[12] Encinas-Oropesa A, Demand M, Piraux L, Huynen I and Ebels U 2001 Phys. Rev. B 63 104415
[13] Encinas-Oropesa A, Demand M, Piraux L, Ebels U and Huynen I 2001 J. Appl. Phys. 89 6704
[14] Liu R L, Wang J B, Liu Q F, Wang H X and Jiang C G 2008 J. Appl. Phys. 103 013910
[15] Dao N, Donahue M J, Dumitru I, Spinu L, Whittenburg S L and Lodder J C 2004 Nanotechnology 15 S634
[16] G'erardin O, Youssef J B, Le Gall H, Vukadinovic N, Jacquart P M and Donahue M J 2000 J. Appl. Phys. 88 5899
[17] Dantas C C and Andrade L A 2008 Phys. Rev. B 78 024441
[18] Gubbiotti G, Madami M, Tacchi S, Carlotti G and Okuno T 2006 J. Appl. Phys. 99 08C701
[19] Keatley P S, Kruglyak V V, Neudert A, Galaktionov E A and Hicken R J, 2008 Phys. Rev. B 78 214412
[20] Kruglyak V V, Keatley P S, Hicken R J, Childress J R and Katine J A 2006 J. Appl. Phys. 99 08F306
[21] Camley R E, McGrath B V, Khivintsev Y and Celinski Z, Adam R, Schneider C M and Grimsditch M 2008 Phys. Rev. B 78 024425
[22] Vukadinovic N and Vacus O, Labrune M, Acher O and Pain D 2000 Phys. Rev. Lett. 85 2817
[23] Vukadinovic N and Boust F 2007 Phys. Rev. B 75 014420
[24] Chen R J, Zhang H W, Shen B G, Yan A R and Chen L D 2009 Chin. Phys. B 18 2582
[25] Song S Y, Guo G H, Zhang G F and Song W B 2009 Acta Phys. Sin. 58 5757 (in Chinese)
[26] Donahue M J and Porter D G 2002 OOMMF User's Guide, Version 1.2a3 (http://math.nist.gov/oommf)
[27] Hertel R 2001 J. Appl. Phys. 90 5752
[28] Kittel C 1948 Phys. Rev. 73 155
[29] Scholz W, Suess D, Schrefl T and Fidler J 2002 J. Appl. Phys. 91 7047
[30] Vel'azquez J, Garc'hia C, V'azquez M and Hernando A 1999 J. Appl. Phys. 85 2768
[31] G'erardina O, Le Gall H, Donahue M J and Vukadinovic N 2001 J. Appl. Phys. 89 7012
[32] Guyader L L, Anceau C, Kirilyuk A, Rasing T, Berkov D and B"ar L 2006 Phys. Rev. B 73 060402(R)
[33] Meckenstock R, Barsukov I, Posth O, Lindner J, Butko A and Spoddig D 2007 Appl. Phys. Lett. 91 142507
[34] Escrig J, Allende S, Altbir D and Bahiana M 2008 Appl. Phys. Lett. 93 023101
[35] Beleggia M, Tandon S, Zhu Y and Graef M D 2004 J. Magn. Magn. Mater. 278 270
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[4] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[5] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[6] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[7] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[8] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[9] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[10] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[11] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[12] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[13] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[14] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[15] Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang Guang-Fu (张光富), Li Zhi-Xiong (李志雄), Wang Xi-Guang (王希光), Nie Yao-Zhuang (聂耀庄), Guo Guang-Hua (郭光华). Chin. Phys. B, 2015, 24(9): 097503.
No Suggested Reading articles found!