Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 087102    DOI: 10.1088/1674-1056/19/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic and magnetic properties of the Mn–Ni(110) c(2×2) surface alloy

Li Deng-Feng(李登峰)a)b)†, Xiao Hai-Yan(肖海燕)b), Zu Xiao-Tao(祖小涛)b), Dong Hui-Ning(董会宁)a), and Gao Fei(高飞)c)
a Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; b Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; c Pacific Northwest National Laboratory, P. O. Box 999, Richland, WA 99352, USA
Abstract  Using first-principles total energy method, we study the structural, the electronic and the magnetic properties of the MnNi(110) c(2×2) surface alloy. Paramagnetic, ferromagnetic, and antiferromagnetic surfaces in the top layer and the second layer are considered. It turns out that the substitutional alloy in the outermost layer with ferromagnetic surface is the most stable in all cases. The buckling of the Mn–Ni(110) c(2×2) surface alloy in the top layer is as large as 0.26 ? (1? = 0.1 nm) and the weak rippling is 0.038 ? in the third layer, in excellent agreement with experimental results. It is proved that the magnetism of Mn can stabilize this surface alloy. Electronic structures show a large magnetic splitting for the Mn atom, which is slightly higher than that of Mn–Ni(100) c(2×2) surface alloy (3.41 eV) due to the higher magnetic moment. A large magnetic moment for the Mn atom is predicted to be 3.81 μB. We suggest the ferromagnetic order of the Mn moments and the ferromagnetic coupling to the Ni substrate, which confirms the experimental results. The magnetism of Mn is identified as the driving force of the large buckling and the work-function change. The comparison with the other magnetic surface alloys is also presented and some trends are predicted.
Keywords:  manganese      nickel      magnetic surface alloy      density of states      density functional theory  
Received:  29 September 2009      Revised:  08 February 2010      Accepted manuscript online: 
PACS:  71.20.Be (Transition metals and alloys)  
  62.20.F- (Deformation and plasticity)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947102), the Foundation of Education Committee of Chongqing, China (Grant No. KJ090503), the Foundation of Science Committee of Chongqing, China (Grant No. CSTC 2007BB4385), and the Doctoral Foundation of Chongqing University of Posts and Telecommunications, China (Grant No. A2008-64).

Cite this article: 

Li Deng-Feng(李登峰), Xiao Hai-Yan(肖海燕), Zu Xiao-Tao(祖小涛), Dong Hui-Ning(董会宁), and Gao Fei(高飞) Structural, electronic and magnetic properties of the Mn–Ni(110) c(2×2) surface alloy 2010 Chin. Phys. B 19 087102

[1] Kim W, Oh S J, Seo J, Kim J S, Min H G and Hong S C 1998 Phys. Rev. B 57 8823
[2] Dennler S and Hafner J 2005 Phys. Rev. B 72 214413
[3] Schieffer P, Krembel C, Hanf M C, Gewinner G and Gauthier Y 2002 Phys. Rev. B 65 235427
[4] Pentcheva R and Scheffler M 2002 Phys. Rev. B 65 155418
[5] Bode M, Heinze S, Kubetzka A, Pietzsch O, Hennefarth M, Getzlaff M, Wiesendanger R, Nie X, Bihlmayer G and Blügel S 2002 Phys. Rev. B 66 14425
[6] Wuttig M, Gauthier Y and Blügel S 1993 Phys. Rev. Lett. 70 3619
[7] O'Brien W L and Tonner B P 1995 Phys. Rev. B 51 617
[8] Rader O, Gudat W, Carbone C, Vescovo E, Blügel S, Kl"asges R, Eberhardt W, Wuttig M, Redinger J and Himpsel F J 1997 Phys. Rev. B 55 5404
[9] Rader O, Mizokawa T, Fujimori A and Kimura A 2001 Phys. Rev. B 64 165414
[10] Xie T, Kimura A, Kanbe T, Qiao S, Muro T, Taniguchi M, Imada S and Suga S 2003 Jpn. J. Appl. Phys. 42 4695
[11] Santis M De, Abad-Langlais V, Gauthier Y and Dolle P 2004 Phys. Rev. B 69 115430
[12] Kresse G and Joubert J 1999 Phys. Rev. B 59 1758
[13] Perdew J P, Chevary J P, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[14] White J A and Bird D M 1994 Phys. Rev. B 50 4954
[15] Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067
[16] Li D F, Xiao H Y, Zu X T and Dong H N 2007 Mater. Sci. Eng. A 460-461 50
[17] Ross Ch, Schirmer B, Wuttig M, Gauthier Y, Bihlmayer G and Blügel S 1998 Phys. Rev. B 57 2607
[18] Bihlmayer G, Asada T, Abt R and Blügel S 2000 Proc. International Symposium on Structure and Dynamics of Heterogeneous Systems (Singapore: World Scientific) p. 179
[19] Bihlmayer G, Kurz Ph and Bl"ugel S 2000 Phys. Rev. B 62 4726
[20] Villars P and Calvert L D 1991 Pearson's Handbook of Crystallographic Data for Intermetallic Phases (Ohio: American Society for Metals, Materials Park)
[21] Quinn P D, Bittencourt C, Brown D, Woodruff D P, Noakes T C Q and Bailey P 2002 J. Phys.: Condens. Matter 14 665
[22] Spisak D and Hafner J 1999 J. Phys.: Condens. Matter 11 6359
[23] Kresse G and Hafner J 2000 Surf. Sci. 459 287
[24] Mittendorfer F, Eichler A and Hafner J 1999 Surf. Sci. 423 1
[25] Keung T C, Kao C L, Su W S, Feng Y J and Chan C T 2003 Phys. Rev. B 68 195408
[26] Nonas B, Cabria I, Zeller R, Dederichs P H, Huhne T and Ebert H 2001 Phys. Rev. Lett. 86 2146
[27] Wuttig M, Knight C C, Flores T and Gauthier Y 1993 Surf. Sci. 292 189
[28] Xiao H Y, Zu X T, He X and Gao F 2006 Chem. Phys. 325 519
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
No Suggested Reading articles found!