Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 084209    DOI: 10.1088/1674-1056/19/8/084209
RAPID COMMUNICATION Prev   Next  

A novel method of rapidly modeling optical properties of actual photonic crystal fibres

Wang Li-Wen(王立文), Lou Shu-Qin(娄淑琴), Chen Wei-Guo(陈卫国), and Li Hong-Lei(李宏雷)
Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China; Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.
Keywords:  photonic crystal fibre      digital image processing      finite element method      modeling optical properties  
Received:  08 March 2010      Revised:  06 April 2010      Accepted manuscript online: 
PACS:  42.70.-a (Optical materials)  
  42.81.Bm (Fabrication, cladding, and splicing)  
  42.81.Gs (Birefringence, polarization)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB328206), the National Natural Science Foundation of China (Grant No. 60977033) and the Science and Technology Innovation Foundation for Excellent Doctors of Beijing Jiaotong University, China (Grant Nos. 141055522 and 141060522).

Cite this article: 

Wang Li-Wen(王立文), Lou Shu-Qin(娄淑琴), Chen Wei-Guo(陈卫国), and Li Hong-Lei(李宏雷) A novel method of rapidly modeling optical properties of actual photonic crystal fibres 2010 Chin. Phys. B 19 084209

[1] Knight J C, Birks T A, Russell P S J and Atkin D M 1996 Opt. Lett. 21 1547
[2] Liu X Y, Zhang F D, Zhang M and Ye P D 2007 Chin. Phys. 16 1710
[3] Li Y Z, Qian L J, Lu D Q, Fan D Y and Chen G H 2008 Chin. Phys. B 17 205
[4] Zhang X, Hu M L, Song Y J, Chai L and Wang Q Y 2010 Acta Phys. Sin. 59 1863 (in Chinese)
[5] Palavicini C, Jaouen Y, Debarge G, Obaton A F, Kerrinckx E, Quiquempois Y, Douay M and Lepers C 2004 Proceedings of IEEE of 17th Conference on Lasers and Electro-Optics Society Washington, May 16–21, 2004, CWA67
[6] Liu X M, Wang Z F, Hou J, Jin A J and Liang D M 2009 Asia Communications and Photonics Conference and Exhibition Shanghai, November 2–6, 2009, WL35
[7] Cohen L G 1985 J. Lightwave Technol. 3 958
[8] Hansen T P, Broeng J, Libori S E B, Knudsen E, Bjarklev A, Jensen J R and Simonsen H 2001 IEEE Photon. Technol. Lett. 13 588
[9] Suzuki K, Kubota H, Kawanishi S, Tanaka M and Fujita M 2001 Opt. Express 9 676
[10] Nielsen M D, Vienne G, Jensen J R and Bjarklev A 2002 Proceedings of IEEE of 14th Conference on Lasers and Electro-Optics Society San Diego, November 12–13, 2001, 707
[11] Genty G, Ludvigsen H, Kaviola M and Hansen K P 2004 Opt. Express 12 929
[12] Ritari T, Niemi T, Ludvigsen H, Wegmuller M, Gisin N, Folkenberg J R and Petterson A 2003 Opt. Commun. 226 233
[13] Folkenberg J R, Nielsen M D, Mortensen N A, Jakobsen C and Simonsen H R 2004 Opt. Express 12 956
[14] Peyrilloux A, Chartier T, Hideur A, Berthelot L, Melin G, Lempereur S, Pagnoux D and Roy P 2003 J. Lightwave Technol. 21 536
[15] Zhang Y N, Miao R C, Ren L Y, Wang H Y, Wang L L and Zhao W 2007 Chin. Phys. 16 1719
[16] Lou S Q, Wang Z, Ren G B and Jian S S 2004 Chin. Phys. 13 1493
[17] Folkenberg J R, Mortensen N A, Hansen K P, Hansen T P, Simonsen H R and Jakobsen C 2003 Opt. Lett. 28 1882
[18] Tian H D, Yu Z Y, Han L H and Liu Y M 2009 Chin. Phys. B 18 1109
[19] Meng J, Hou L T, Zhou G Y, Gao F, Yuan J H and Wei D B 2008 Chin. Phys. B 17 3779
[20] Keys R G 1981 IEEE Transactions on Acoustics, Speech, and Signal Processing 29 1153
[21] Hou H S and Andrews H C 1978 IEEE Transactions on Acoustics, Speech, and Signal Processing 26 508
[22] Zhang A Z, Liu Z L, Zou X C and Xiang Z Q 2007 Microelectronics & Computer 24 49 (in Chenese)
[23] Sartor L J and Weeks A R 2001 J. Electronic Imaging 10 548
[24] Waheeb A U, Akram M and Ziad A A 2009 European Journal of Scientific Research 27 167
[25] Zhang W W and Liu X F 2006 Computer & Digital Engineering 34 59 (in Chinese)
[26] Poli F, Cucinotta A and Selleri S 2007 Photonic Crystal Fiber---Properties and Application (The Netherlands: Springer) pp. 219--223
[27] Crystal Fibre A/S http://www.crystal-fibre.com/datasheets/LMA-PM-5.pdf
[2008]
[28] Crystal Fibre A/S http://www.crystal-fibre.com/datasheets/PM-1550-01.pdf
[2008]
[29] Wang L W, Lou S Q, Chen W G and Fang H 2007 Asia Optical Fibre Communication & Optoelectronic Exposition Shanghai, Octtober 17--19, 2007 p. 370
[30] Steel M J, White T P, Sterke C M D, McPhedran R C and Botten L C 2001 Opt. Lett. 26 488
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[7] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[8] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[9] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[10] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[11] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[12] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[13] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[14] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[15] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
No Suggested Reading articles found!