Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 084201    DOI: 10.1088/1674-1056/19/8/084201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Scattering of scalar light wave from a Gaussianben–Schell model medium

Wang Tao(王涛) and Zhao Dao-Mu(赵道木)
Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  The scattering of scalar light wave from a random medium with a correlation function of Gaussian–Schell model distribution is studied. It is shown that the properties of the scattered field, i.e., the spectral density and the spectral degree of coherence of the scattered field, are closely related to the properties of the scattering medium, including the scaled effective radius and the scaled correlation length of the correlation function.
Keywords:  scattering      Gaussian–Schell model medium      spectral density      coherence  
Received:  05 January 2010      Revised:  26 January 2010      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Dd (Wave propagation in random media)  
  42.25.Kb (Coherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874150), the Natural Science Foundation of Zhejiang Province of China (Grant No. R1090168), and the Program for New Century Excellent Talents in University (Grant No. NCET-07-0760).

Cite this article: 

Wang Tao(王涛) and Zhao Dao-Mu(赵道木) Scattering of scalar light wave from a Gaussianben–Schell model medium 2010 Chin. Phys. B 19 084201

[1] Wolf E, Foley J T and Gori F 1989 J. Opt. Soc. Am. A 6 1142
[2] Shirai T and Asakura T 1995 J. Opt. Soc. Am. A 12 1354
[3] Shirai T and Asakura T 1996 Opt. Commun. 123 234
[4] Dogariu A and Wolf E 1998 Opt. Lett. 23 1340
[5] Gbur G and Wolf E 1999 Opt. Commun. 168 39
[6] Lahiri M, Wolf E, Fischer D G and Shirai T 2009 Phys. Rev. Lett. 102 123901
[7] Zhao D, Korotkova O and Wolf E 2007 Opt. Lett. 32 3483
[8] Korotkova O and Wolf E 2007 Phys. Rev. E 75 056609
[9] Sahin S and Korotkova O 2008 Phys. Rev. A 78 063815
[10] Sahin S and Korotkova O 2009 Opt. Lett. 34 1762
[11] Visser T, Fischer D and Wolf E 2006 J. Opt. Soc. Am. A 23 1631
[12] Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press)
[13] Born M and Wolf E 1999 Principles of Optics 7th ed. (Cambridge: Cambridge University Press)
[14] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[5] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[6] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[7] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[8] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[9] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[10] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[13] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[14] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[15] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
No Suggested Reading articles found!