Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 083204    DOI: 10.1088/1674-1056/19/8/083204
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Propagation properties of electromagnetic fields in elliptic dielectric hollow fibres and their applications

Li Hui-Rong(李会容) and Yin Jian-Ping(印建平)
State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  We numerically calculate and analyse the electromagnetic fields, optical intensity distributions, polarization states and orbital angular momentum of some elliptic hollow modes in an elliptic dielectric hollow fiber (EDHF) by using Mathieu functions, and also calculate the optical potential of the blue-detuned eHE11 mode evanescent-light wave for 85Rb atoms, including the position-dependent van der Waals potential, and discuss briefly some potential applications of our EDHF in atom and molecule optics, etc. Our study shows that the vector electric field distributions of the odd modes in the cross section of the EDHF are the same as that of the even modes and with different boundary ellipses by rotating an angle of $\pi$/2, and the orbital angular momentum (OAM) of single HE (EH) mode is exactly equal to zero, while that of dual-mode in the EDHF is fractional in $\hbar$, and has a sinusoidal oscillation as z varies. The EDHF can be used to produce various elliptic hollow beams, even to generate and study various atomic vortices with a fractional charge and its fractional quantum Hall effect in atomic Bose–Einstein condensate, and so on.
Keywords:  elliptic hollow modes      optical potential      orbital angular momentum      polarisation  
Received:  09 December 2009      Revised:  06 January 2010      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10374029, 10434060 and 10674047), the National Key Basic Research and Development Program of China (Grant No. 2006CB921604), the Basic Key Program of Shanghai Municipality (Grant No. 07JC14017), the Program for Changjiang Scholar and Innovative Research Team, and Shanghai Leading Academic Discipline Project (Grant No. B408).

Cite this article: 

Li Hui-Rong(李会容) and Yin Jian-Ping(印建平) Propagation properties of electromagnetic fields in elliptic dielectric hollow fibres and their applications 2010 Chin. Phys. B 19 083204

[1] Accatino L, Bertin G and Mongiardo M 1997 IEEE Trans. Microwave Theory Tech. 45 2393
[2] Rengarajan S R and Lewis J E 1980 IEEE Trans. Microwave Theory Tech. 28 1085
[3] Choi S and Oh K 2003 Opt. Commun. 221 307
[4] Yin J P, Noh H R, Lee K, Kim K H, Wang Y Z and Jhe W 1997 Opt. Commun. 138 287
[5] Yin J P, Gao W J, Wang H F, Long Q and Wang Y Z 2002 Chin. Phys. 11 1157
[6] Renn M J, Montgomery D, Vdovin O, Anderson D Z, Wieman C E and Cornell E A 1995 Phys. Rev. Lett. 75 3253
[7] Renn M J, Donley E A, Cornell E A, Wieman C E and Anderson D Z 1996 Phys. Rev. A 53 R648
[8] Ito H, Nakata T, Sakaki K, Ohtsu M, Lee K I and Jhe W 1996 Phys. Rev. Lett. 76 4500
[9] Wang Z L, Dai M, Yin J P and Wang Z L 2005 Opt. Express 13 8406
[10] Ni Y, Liu N C and Yin J P 2003 J. Opt. B: Quantum Semiclass. Opt. 5 300
[11] Yin J P, Gao W J and Zhu Y F 2003 Prog. Opt. 45 119
[12] Yeh C 1962 J. Appl. Phys. 33 3235
[13] Chu L J 1938 J. Appl. Phys. 9 583
[14] Kretzsch J G 1970 IEEE Trans. Microwave Theory Tech. MT18 547
[15] Kretzsch J G 1972 IEEE Trans. Microwave Theory Tech. MT20 280
[16] Falciase G, Someda C G and Valdoni F 1973 IEEE Trans. Microwave Theory Tech. MT21 154
[17] Rengarajan S R and Lewis J E 1979 Electron. Lett. 15 637
[18] Goldberg D A, Laslett L J and Rimmer R A 1990 IEEE Trans. Microwave Theory Tech. 38 1603
[19] Valenzuela G R 1960 IRE Trans. Microwave Theory Tech. 8 431
[20] Rengarajan S R and Lewis J E 1981 Radio Sci. 16 541
[21] Shu C 2000 IEEE Trans. Microwave Theory Tech. 48 319
[22] Zhang S J and Shen Y C 1995 IEEE Trans. Microwave Theory Tech. 43 227
[23] Schneider M and Marquardt J 1999 IEEE Trans. Microwave Theory Tech. 47 513
[24] Young D L, Hu S P, Chen C W, Fan C M and Murugesan K 2005 Microwave Opt. Tech. Lett. 44 552
[25] Xiong T X and Yang R G 2004 J. Southwest Jiaotong Univ. 12 130
[26] Halterman K, Feng S and Overfelt P L 2007 Phys. Rev. A 76 013834
[27] Gomez-Castellanos I and Rodriguez-Dagnino R M 2007 Opt. Eng. 46 45003
[28] Nair V M, Sarkar S and Khijwania S K 2008 IEEE Photonics Tech. Lett. 20 1381
[29] Abramowitz M and Stegun I 1964 Handbook of Mathematical Functions (New York: Dover) pp. 721--750
[30] Morse P and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill)
[31] Alhargan F A 2000 ACM Trans. Math. Softw. 26 390
[32] Ito H, Sakaki K, Nakata T, Jhe W and Ohtsu M 1995 Opt. Commun. 115 57
[33] Ch'avez-Cerda S, Padgett M J, Allison I, New G H C, Guti'errez-Vega J C, O'Neil A T, MacVicar I and Courtial J 2002 J. Opt. B: Quantum Semiclass. Opt. 4 S52
[34] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[35] Yin J P, Zhu Y F and Wang Y Z 1998 Phys. Rev. A 57 1957
[36] Ito H, Sakaki K, Nakata T, Jhe W H and Ohtsu M 1995 Ultramicroscopy 61 91
[37] Marksteiner S, Savage C M, Zoller P and Rolston S L 1994 Phys. Rev. A 50 2680
[38] Duan Z L, Zhang W P, Li S Q, Zhou Z Y, Feng Y Y and Zhu R 2005 Acta Phys. Sin. 54 5622 (in Chinese)
[39] Xu S H, Li Y M and Lou L R 2006 Chin. Phys. 15 1391
[40] Gahagan K T and Swartzlander G A 1999 J. Opt. Soc. Am. B 16 533
[41] Simpson N B, Dholakia K, Allen L and Padgett M J 1997 Opt. Lett. 22 52
[42] Lopez-Mariscal C, Gutierrez-Vega J C, Milne G and Dholakia K 2006 Opt. Express 14 4182
[43] Babiker M, Bennett C R, Andrews D L and Davila Romero L C 2002 Phys. Rev. Lett. 89 143601
[44] Aftalion A and Blanc X 2008 Ann. I. H. Poincar'e-AN. 25 339
[45] Andersen M F, Ryu C, Clade P, Natarajan V, Vaziri A, Helmerson K and Phillips W D 2006 Phys. Rev. Lett. 97 170406
[46] Wright K C, Leslie L S and Bigelow N P 2008 Phys. Rev. A 78 041601
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[8] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[9] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[10] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[11] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[14] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[15] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
No Suggested Reading articles found!