|
|
Attosecond manipulation of ionization and efficient broadband supercontinuum generation in stretched molecules |
Wang Shao-Yi(王少义)a), Hong Wei-Yi(洪伟毅)a), Zhang Qing-Bin(张庆斌)a), Li Qian-Guang(李钱光)b), and Lu Pei-Xiang(陆培祥)a)† |
a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; b School of Physics and Electronic-Information Engineering, Xiaogan College, Xiaogan 432000, China |
|
|
Abstract We theoretically investigate the high-order harmonic generation from stretched molecules in a linearly polarized intense field. By adopting an infrared pulse combined with an ultraviolet (UV) attosecond pulse, the ionization process can be controlled effectively. In this excitation scheme, the harmonic spectrum beyond Ip + 3.17Up is significantly enhanced by two orders, where Ip and Up = e2E02 /(4meω2) are the ionization and ponderomotive potential, then smooth broadband supercontinuum with the bandwidth of about 120 eV is obtained, which leads to an isolated sub-60-as attosecond pulse with a high signal-noise ratio. Moreover, the bandwidth of the supercontinuum is weakly dependent on the location and pulse duration of the UV pulse.
|
Received: 01 June 2009
Revised: 31 December 2009
Accepted manuscript online:
|
PACS:
|
33.80.Eh
|
(Autoionization, photoionization, and photodetachment)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774054), and the National Key Basic Research Special Foundation of China (NKBRSFC) (Grant No. 2006CB806006). |
Cite this article:
Wang Shao-Yi(王少义), Hong Wei-Yi(洪伟毅), Zhang Qing-Bin(张庆斌), Li Qian-Guang(李钱光), and Lu Pei-Xiang(陆培祥) Attosecond manipulation of ionization and efficient broadband supercontinuum generation in stretched molecules 2010 Chin. Phys. B 19 083203
|
[1] |
Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
|
[2] |
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
|
[3] |
Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B and Krausz F 2001 Science 291 1923
|
[4] |
Hong W Y, Lu P X, Lan P F, Yang Z Y, Li Y H and Liao Q 2008 Phys. Rev. A 77 033410
|
[5] |
Lan P F, Lu P X, Cao W and Wang X L 2007 Phys. Rev. A 76 043808
|
[6] |
Paul P M, Toma E S, Breger P, Mullot G, Aug' e F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689
|
[7] |
Christov I P, Murnane M M and Kapteyn H C 1997 Phys. Rev. Lett. 78 1251
|
[8] |
Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D and Nisoli M 2006 Science 314 443
|
[9] |
Ge Y C 2008 Chin. Phys. B 18 1473
|
[10] |
Zhou Z Y 2007 Chin. Phys. 16 675
|
[11] |
Bandrauk A D and Shon N H 2002 Phys. Rev. A 66 031401
|
[12] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[13] |
Lewenstein M, Balcou Ph, Ivanov M Yu, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[14] |
Ivanov M, Corkum P B, Zuo T and Bandrauk A 1995 Phys. Rev. Lett. 74 2933
|
[15] |
Zhang Q B, Lu P X, Lan P F, Hong W Y and Yang Z Y 2008 Opt. Express 16 9795
|
[16] |
Pfeifer T, Gallmann L, Abel M J, Neumark D M and Leone S R 2006 Opt. Lett. 31 975
|
[17] |
Heinrich A, Kornelis W, Anscombe M P, Hauri C P, Schlup P, Biegert J and Keller U 2006 J. Phys. B 39 S275
|
[18] |
Chirilcdot a C C and Lein M 2006 Phys. Rev. A 73 023410
|
[19] |
Bandrauk A D, Chelkowski S, Yu H and Constant E 1997 Phys. Rev. A 56 R2537
|
[20] |
Lan P F, Lu P X, Cao W, Wang X L and Yang G 2006 Phys. Rev. A 74 063411
|
[21] |
Moreno P, Plaja L and Roso L 1997 Phys. Rev. A 55 R1593
|
[22] |
Gaarde M B, Tate J L and Schafer K J 2008 J. Phys. B 41 132001
|
[23] |
Hong W Y, Lu P X, Lan P F, Zhang Q B and Wang X B 2009 Opt. Express 17 5139
|
[24] |
Lein M and Rost J M 2003 Phys. Rev. Lett. 91 243901
|
[25] |
Numico R, Moreno P, Plaja L and Roso L 1998 J. Phys. B 31 4163
|
[26] |
Stapelfeldt H, Sakai H, Constant E and Corkum P B 1997 Phys. Rev. A 55 R3319
|
[27] |
Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
|
[28] |
Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
|
[29] |
Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
|
[30] |
Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y and Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|