Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 076105    DOI: 10.1088/1674-1056/19/7/076105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A simple theoretical model for evaluating the ability to form a single crystal

Jin Yun-Fei(金云飞)a)b), Ming Chen(明辰)a)b), Ye Xiang-Xi(叶祥熙)a)b), Wang Wei-Min(王为民)c), and Ning Xi-Jing(宁西京) a)b)†
a Institute of Modern Physics, Fudan University, Shanghai 200433, China; b Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Fudan University, Shanghai 200433, China; Dongfang Steam Turbine Works, Deyang 618000, China
Abstract  A simple theoretical model proposed recently to evaluate the ability of bulk materials to form single crystals is further tested via vast molecular dynamics simulations of growth for fcc (Ni, Cu, Al, Ar) and hcp (Mg) crystals, especially applied to the growth of bcc (Fe) crystal, showing that the validity of the model is independent of crystal types and the interaction potentials of the constitute atoms.
Keywords:  single crystal      crystal growth      molecular dynamics      material design  
Received:  10 December 2009      Revised:  06 January 2010      Accepted manuscript online: 
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  61.66.Bi (Elemental solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574030) and the Shanghai Leading Academic Discipline Project (Grant No. B107).

Cite this article: 

Jin Yun-Fei(金云飞), Ming Chen(明辰), Ye Xiang-Xi(叶祥熙), Wang Wei-Min(王为民), and Ning Xi-Jing(宁西京) A simple theoretical model for evaluating the ability to form a single crystal 2010 Chin. Phys. B 19 076105

[1] Liu A Y and Cohen M L 1989 Science 245 841
[2] Teter D M and Hemley R J 1996 Science 271 53
[3] Wang E G and 1997 Prog. Mater. Sci. 41 241
[4] Jiang J C, Cheng W J, Zhang Y, Lan M B, Zhu H S and Shen D Z 2007 Mater. Lett. 61 2243
[5] Li Y D, Qian Y T, Liao H W, Ding Y, Yang L, Xu C Y, Li F Q and Zhou G 1998 Science 281 246
[6] Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[7] Lou Z S, Chen Q W, Zhang Y F, Wang W and Qian Y T 2003 J. Am. Chem. Soc. 125 9302
[8] Zhou W Y, Chang B H and Qian L X 1998 Acta Phys. Sin. 47 346 (in Chinese)
[9] He P M, Xu Y B, Li H Y, Qi Z P and Cai L Z 1994 Acta Phys. Sin. 43 248 (in Chinese)
[10] Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711
[11] Ma T B, Hu Y Z and Wang H 2006 Acta Phys. Sin. 55 2922 (in Chinese)
[12] Luo J, Zhu W J, Lin L B, He H L and Jing F Q 2005 Acta Phys. Sin. 54 2791 (in Chinese)
[13] Lei Y, Cheng Z N and Tang D Y 1997 Acta Phys. Sin. 46 511 (in Chinese)
[14] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[15] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p21
[16] Mendelev I, Han S, Srolovitz D J, Ackland G J, Sun D Y and Asta M 2003 Phil. Mag. 83 3977
[17] Ackland G J, Bacon D J, Calder A F and Harry T 1997 Phil. Mag. A 75 713
[18] Il'inskii A, Slyusarenko S, Slukhovskii O, Kaban I and Hoyer W 2002 Mater. Sci. Eng. A 325 98
[19] Riley M E, Coltrin M E and Diestler D J 1988 J. Chem. Phys. 88 5934
[20] Zhang Q and Buch V 1990 J. Chem. Phys. 92 5004
[21] Raff L M 1991 J. Chem. Phys. 95 8901
[22] Grochola G, Russo S P, Snook I K and Yarovsky I 2002 J. Chem. Phys. 117 7685 endfootnotesize
[1] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[2] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[8] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[11] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[12] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[13] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[14] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[15] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
No Suggested Reading articles found!