Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057206    DOI: 10.1088/1674-1056/19/5/057206
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Size effect of quantum conductance in carbon nanotube Y-Junctions

Liu Hong(刘红)
Physics Department, Nanjing Normal University, Nanjing 210046, China
Abstract  This paper studies the quantum conductance properties of three-terminated carbon nanotube Y-junctions, which are built by connecting three (5,5) single-walled carbon nanotubes. The results show that the quantum conductance at the Fermi energy oscillates periodically with the junction's size, and the number of oscillating periodic layers is 3 which is the same as that in the two terminated $(10,0)/m(5,5)/(10,0)$ junctions. Moreover, this Y-junction with different size exhibits obvious different distribution of electron current in the two drain branches, called shunt valve effect of electronic current. Thus the degree of this effect can be controlled and modulated directly by constructing the three branches' sizes or the distribution of defect. The results show in detail that the difference between the two drain currents can be up to two times for some constructions with special sizes. In addition, the uniform distribution of defects in the Y-junction leads to lower quantum conductance than that of other defect configurations.
Keywords:  single-walled carbon nanotube      Y-junction      quantum conductance      local density of state  
Received:  16 July 2009      Revised:  10 October 2009      Accepted manuscript online: 
PACS:  73.63.Fg (Nanotubes)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
Fund: Project supported by the Natural Science Foundation of Jiangsu Education Department (Grant No.~04KJB140065) in China.

Cite this article: 

Liu Hong(刘红) Size effect of quantum conductance in carbon nanotube Y-Junctions 2010 Chin. Phys. B 19 057206

[1] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J and Dekker C 1997 Nature (London) 386 474
[1a] Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A and Smalley R E 1997 Science 275 1922
[2] del Alamo J A and Eugster C C 1990 Appl. Phys. Lett. 56 78.
[3] Sols F, Macucci M, Ravaioli U and Hess K 1989 J. Appl. Phys. 66 3892
[4] Palm T and Thylen L 1992 Appl. Phys. Lett. 60 237
[5] Worschech L, Weidner B, Reitzenstein S and Forchel A 2001 Appl. Phys. Lett. 78 3325
[ Xu H Q 2001 Appl. Phys. Lett. 78 2064
[ Hieke K and Ulfward M 2000 Phys. Rev. B 62 16727
[6] Chico L, Crespi V H, Benedict L X, Louie S G and Cohen M L 1996 Phys. Rev. Lett. 76 971
[6a] Chico L, Lopez Sancho M P and Munoz M C 1998 Phys. Rev. Lett. 81 1278
[7] Liu H and Tao Y C 2003 European Phys. J. B 36 411
[8] Liu H and Chen J W 2003 Acta Phys. Sin. 52 664 (in Chinese)
[9] Liu H, Chen J W and Yang H T 2004 Phys. Stat. Sol. B 241 127
[10] Fa W, Chen J W, Lin H and Dong J M 2004 Phys. Rev. B 69 235413
[11] Liu H and Tao Y C 2005 Nanotechnology 16 619
[12] Liu H 2005 Phys. Lett. A 339 378
[13] Nardelli M B 1999 Phys. Rev. B 60 7828
[13a] Nardelli M B and Bernholc J 1999 Phys. Rev. B 60 16338
[14] Li J, Papadopoulos C, Rakitin A and Xu J 1999 Nature(London) 402 253
[15] Andriotis A N, Menon M, Srivastava D and Chernozatonskii L 2001 Phys. Rev. Lett. 87 066802
[16] del Valle M, Tejedor C and Cuniberti G 2005 Phys. Rev. B 71 125306
[17] Yin Y J, Chen Y L, Yin J and Huang K Z 2006 Nanotechnology 17 4941
[18] Zhao Q, Feng X Q, Zou J, Yin Y J and Yu S W 2007 Appl. Phys. Lett. 91 043108
[19] Ferreira M S, Dargam T G, Muniz R B and Latge A 2000 Phys. Rev. B 62 16040
[19a] Ferreira M S, Dargam T G, Muniz R B and Latge A 2001 Phys. Rev. B 63 245111
[20] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[21] Yao N and Lordi V 1998 J. Appl. Phys. 84 1939
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[3] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[4] Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons
Hong Liu(刘红). Chin. Phys. B, 2017, 26(11): 116101.
[5] High-energy pulse generation using Yb-doped Q-switched fiber laser based on single-walled carbon nanotubes
Wang Jun-Li (王军利), Wang Xue-Ling (汪雪玲), He Bo-Rong (贺博荣), Zhu Jiang-Feng (朱江峰), Wei Zhi-Yi (魏志义), Wang Yong-Gang (王勇刚). Chin. Phys. B, 2015, 24(9): 097601.
[6] Influence of chirality on the thermal conductivity of single-walled carbon nanotubes
Feng Ya (冯雅), Zhu Jie (祝捷), Tang Da-Wei (唐大伟). Chin. Phys. B, 2014, 23(8): 083101.
[7] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[8] Parametric instabilities in single-walled carbon nanotubes
He Cai-Xia (何彩霞), Jian Yue (简粤), Qi Xiu-Ying (祁秀英), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2014, 23(2): 025202.
[9] Electron states scattering off line edges on the surface of topological insulator
Shao Huai-Hua (邵怀华), Liu Yi-Man (刘一曼), Zhou Xiao-Ying (周小英), Zhou Guang-Hui (周光辉). Chin. Phys. B, 2014, 23(10): 107304.
[10] Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy
Wu Mu-Hong (吴慕鸿), Li Xiao (李晓), Pan Ding (潘鼎), Liu Lei (刘磊), Yang Xiao-Xia (杨晓霞), Xu Zhi (许智), Wang Wen-Long (王文龙), Sui Yu (隋郁), Bai Xue-Dong (白雪冬). Chin. Phys. B, 2013, 22(8): 086101.
[11] Using a water-confined carbon nanotube to probe electricity of sequential charged segments of macromolecules
Wang Yu(王禹), Zhao Yan-Jiao(赵艳皎), and Huang Ji-Ping(黄吉平) . Chin. Phys. B, 2012, 21(7): 076102.
[12] Asymmetry of the water flux induced by the deformation of a nanotube
He Jun-Xia(何俊霞), Lu Hang-Jun(陆杭军), Liu Yang(刘扬), Wu Feng-Min(吴锋民), Nie Xue-Chuan(聂雪川), Zhou Xiao-Yan(周晓艳), and Chen Yan-Yan(陈艳燕) . Chin. Phys. B, 2012, 21(5): 054703.
[13] Thermal properties of single-walled carbon nanotube crystal
Hu Li-Jun(胡丽君), Liu Ji(刘基), Liu Zheng(刘政), Qiu Cai-Yu(邱彩玉), Zhou Hai-Qing(周海青), and Sun Lian-Feng(孙连峰) . Chin. Phys. B, 2011, 20(9): 096101.
[14] Selection of isolated and individual single-walled carbon nanotube from a film and its usage in nanodevices
Wang Gong-Tang(王公堂). Chin. Phys. B, 2011, 20(6): 067305.
[15] Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes
Niu Zhi-Qiang(牛志强), Ma Wen-Jun(马文君), Dong Hai-Bo(董海博), Li Jin-Zhu(李金柱), and Zhou Wei-Ya(周维亚) . Chin. Phys. B, 2011, 20(2): 028101.
No Suggested Reading articles found!