Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 056701    DOI: 10.1088/1674-1056/19/5/056701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Superhydrophobic surfaces via controlling the morphology of ZnO micro/nano complex structure

Gong Mao-Gang(公茂刚), Xu Xiao-Liang(许小亮), Yang Zhou(杨周), Liu Yan-Song(刘艳松), and Liu Ling(刘玲)
Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50 ${^\circ}$C was converted from superhydrophilic with a water contact angle lower than 5$^{\circ}$ to superhydrophobic with a water contact angle of 165$^{\circ}$. Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ${^\circ}$C had excellent superhydrophobicity, with a water contact angle of 173$^{\circ}$ and a sliding angle lower than 2$^{\circ}$. Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150 ${^\circ}$C and 200 ${^\circ}$C were found to be 140$^{\circ}$ and 120$^{\circ}$, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.
Keywords:  hydrothermal      superhydrophobic      ZnO      micro/nano complex structure  
Received:  28 October 2009      Revised:  23 November 2009      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  81.16.Dn (Self-assembly)  
  68.55.A- (Nucleation and growth)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  68.08.Bc (Wetting)  
Fund: Project supported by the 973 Program of China (Grant No.~2006CB302900) and National Natural Science Foundation of China (Grant No.~50872129).

Cite this article: 

Gong Mao-Gang(公茂刚), Xu Xiao-Liang(许小亮), Yang Zhou(杨周), Liu Yan-Song(刘艳松), and Liu Ling(刘玲) Superhydrophobic surfaces via controlling the morphology of ZnO micro/nano complex structure 2010 Chin. Phys. B 19 056701

[1] Barthlott W and Neinhaus C 1997 Planta 202 1
[2] Liu H, Feng L, Zhai J, Jiang L and Zhu D B 2004 Langmuir 20 5659
[3] Ebril H Y, Demirel A L, Avci Y and Mert O 2003 Science (Washington, D C, U.S.) 299 1377
[4] Jin M H, Feng X J, Xi J M, Zhai J, Cho K, Feng L and Jiang L 2005 Macromol. Rapid Commun. 26 1805
[5] Li J, Fu J, Cong Y, Wu Y, Xue L J and Han Y C 2006 Appl. Surf. Sci. 252 2229
[6] Zhao N, Shi F, Wang Z Q and Zhang X 2005 Langmuir 21 4713
[7] Han J T, Zheng Y, Cho J H, Xu X and Cho K 2005 J. Phys. Chem. B 109 20773
[8] Gudiksen M S, Lauhon L J, Wang J F, Smith D C and Lieber C M 2002 Nature 415 617 [8a] Cui Y and Lieber C M 2001 Science 291 851 [8b] Star A, Lu Y, Bradley K and Gr\"uner G 2004 Nano Lett. 4 1587 [8c] Marty L, Bonhomme A, Iaia A, Andr\'e E, Rauwel E, Dubourdieu C, Toffoli A, Ducroquet F, Bonnot A M and Bouchiat V 2006 Nanotechnology 17 5038
[9] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897
[10] Kim H J, Lee C H, Kim D W and Yi G C 2006 Nanotechnology 17 327 [10a] Liu H X, Zhou S M, Li S Z, Hang Y, Xu J, Gu S L and Zhang R 2006 Acta Phys. Sin. 55 1398 (in Chinese)
[11] Konenkamp R, Word R C and Godinez M 2005 Nano Lett. 5 2005
[12] Wang Z L and Song J H 2006 Science 312 242
[13] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[14] Wang J X, Sun X W, Yang Y, Huang H, Lee Y C, Tan O K and Vayssieres L 2006 Nanotechnology 17 4995
[15] Li M, Zhai J, Liu H, Song Y, Jiang L and Zhu D 2003 J. Phys. Chem. B 107 9954[15a]Ma K, Li H, Zhang H, Xu X L, Gong M G and Yang Z 2009 Chin. Phys. B 18 1942
[16] Zhang X, Sato O and Fujishima A 2004 Langmuir 20 6065
[17] Liu H, Feng L, Zhai J, Jiang L and Zhu D 2004 Langmuir 20 5659
[18] Chiou N R, Lu C M, Guan J J, Lee L J and Epstein A J 2007 Nature Nanotechnology 2 354
[19] Gong M G, Xu X L, Cao Z L, Liu Y Y and Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese)
[20] Guo M, Diao P and Cai S M 2007 Thin Solid Films 515 7162
[21] Gong M G, Xu X L, Yang Z, Liu Y Y, Lv H F and Lv L 2009 Nanotechnology 20 165602
[22] Wenzel R N 1936 Ind. Eng. Chem. 28 988
[23] Cassie A B D and Baxter S 1944 Trans. Faraday Soc. 40 546
[24] Marmur A 2003 Langmuir 19 8343
[25] Michielsen s and Lee H J 2007 Langmuir 23 6004
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[5] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[8] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[9] A comparative study of the self-propelled jumping capabilities of coalesced droplets on RTV surfaces and superhydrophobic surfaces
Sheng-Wu Wang(王晟伍), Lu Peng(彭璐), Jun-Wu Chen(陈俊武), and Lee Li(李黎). Chin. Phys. B, 2021, 30(4): 046501.
[10] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[11] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[12] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[13] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[14] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[15] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
No Suggested Reading articles found!