Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 048702    DOI: 10.1088/1674-1056/19/4/048702
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Finite size effect of ions and dipoles close to charged interfaces

Tong Chao-Hui(童朝晖) and Zhu Yue-Jin(诸跃进)
Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  The modified dipolar Poisson--Boltzmann (MDPB) equation, where the electrostatics of the dipolar interactions of solvent molecules and also the finite size effects of ions and dipolar solvent molecules are explicitly taken into account on a mean-field level, is studied numerically for a two-plate system with oppositely charged surfaces. The MDPB equation is solved numerically, using the nonlinear Multigrid method, for one-dimensional finite volume meshes. For a high enough surface charge density, numerical results of the MDPB equation reveal that the effective dielectric constant decreases with the increase of the surface charge density. Furthermore, increasing the salt concentration leads to the decrease of the effective dielectric constant close to the charged surfaces. This decrease of the effective dielectric constant with the surface charge density is opposite to the trend from the dipolar Poisson--Boltzmann (DPB) equation. This seemingly inconsistent result is due to the fact that the mean-field approach breaks down in such highly charged systems where the counterions and dipoles are strongly attracted to the charged surfaces and form a quasi two-dimensional layer. In the weak-coupling regime with the electrostatic coupling parameter (the ratio of Bjerrum length to Gouy--Chapman length) $\varXi < 1$, where the MDPB equation works, the effective dielectric constant is independent of the distance from the charged surfaces and there is no accumulation of dipoles near the charged surfaces. Therefore, there are no physical and computational advantages for the MDPB equation over the modified Poisson--Boltzmann (MPB) equation where the effect of dipolar interactions of solvent dipoles is implicitly taken into account in the renormalised dielectric constant.
Keywords:  dipole      Poisson--Boltzmann equation      charged interface      polarisation  
Received:  20 June 2009      Revised:  27 September 2009      Accepted manuscript online: 
PACS:  77.22.Ch (Permittivity (dielectric function))  
  73.25.+i (Surface conductivity and carrier phenomena)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~20954001 and 10774079), the Natural Science Foundation of Zhejiang Province of China (Grant No.~Y7080401), the Natural Science Foundation of Ningbo City (Grant No.~2009A6100

Cite this article: 

Tong Chao-Hui(童朝晖) and Zhu Yue-Jin(诸跃进) Finite size effect of ions and dipoles close to charged interfaces 2010 Chin. Phys. B 19 048702

[1] Andelman D 1995 Handbook of Biological Physics: Structure and Dynamics of Membranes] (Vol.1B) ed.\ Lipowsky R and Sackmann E (Amsterdam: Elsevier Science) pp.603--642
[2] Israelachvili J N 1990 Intermolecular and Surface Forces] 2$^{\rm nd}$ ed.\ (London: Academic Press)
[3] Henderson D 1992 Fundamentals of Inhomogeneous Fluids} (New York: Dekker)
[4] Netz R R and Andelman D 2003 Phys. Rep. 380 1
[5] Lan D, Wang Y R, Yu Y, Ma W J and Li C 2007 Chin. Phys. 16 468
[6] Jiang H Y, Ren Y K, Ao H R and Antonio R 2008 Chin. Phys. B 17 4541
[7] Debye P and Huckel E 1923 Physik 24 185
[8] Debye P and Huckel E 1923 Physik 24 305
[9] Lamperski S, Outhwaite C W and Bhuiyan L B 1996 Mol. Phys. 87 1049
[10] Kjellander R and Marcelja S 1986 J. Phys. Chem. 90 1230
[11] Attard P, Mitchell D J and Ninham B W 1988 J. Chem. Phys. 89 4358
[12] Nordholm S, Penfold R, Jonsson B and Woodward C E 1991 J. Chem. Phys. 95 2048
[13] Netz R R and Orland H 2000 Eur. Phys. J. E 1 203
[14] Forsman J 2004 J. Phys. Chem. B 108 9236
[15] Forsman J 2007 Langmuir 23 5515
[16] Lau A W C 2008 Phys. Rev.E 77 011502
[17] Borukhov I, Andelman D and Orland H 1997 Phys. Rev. Lett. 79 435
[18] Borukhov I, Andelman D and Orland H 2000 Electrochim. Acta 46 221
[19] Bauer B A and Patel S 2009 J. Chem. Phys. 131 084709
[20] Zhou X Y and Lu H J 2007 Chin. Phys. 16 441
[21] Huang J P and Yu K W 2004 Chin. Phys. 13 1065
[22] Kofinger J and Dellago C 2009 Phys. Rev. Lett. 103 080601
[23] Zhao H P, Liu Z Y and Liu Y Y 2001 Chin. Phys. 10 35
[24] Abrashkin A, Andelman D and Orland H 2007 Phys. Rev. Lett. 99 077801
[25] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipe in Fortran 77: the Art of Scientific Computing} 2$^{\rm nd}$ ed.\ (New York: Cambridge University Press) Chapter 19.6
[26] Tong C, Wu T and Provatas N 2006 Modelling Simul. Mater. Sci. Eng. 14 1447
[27] Naji A, Jungblut S, Moreira A G and Netz R R 2005 Physica A 352 131
[28] Boroudjerdi H, Kim Y W, Naji A, Netz R R and Serr A 2005 Phys. Rep. 416 129
[29] Koehl P, Orland H and Delarue M 2009 Phys. Rev. Lett. 102 087801
[30] Wertheim M S 1971 J. Chem. Phys. 55 4291
[31] Kusalik P G and Patey G N 1988 J. Chem. Phys. 88 7715
[32] Patra C N and Ghosh S K 1997 J. Chem. Phys. 106 2752
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[4] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[5] Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks
Bin Liu(刘彬), Ma-Long Hu(胡马龙), Yi-Wen Zhang(章艺文), Yue You(游悦), Zhao-Guo Liang(梁钊国), Xiao-Niu Peng(彭小牛), and Zhong-Jian Yang(杨中见). Chin. Phys. B, 2022, 31(5): 057802.
[6] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[7] M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94
Ju Meng(孟举), Wen-Xian Li(李文显), Ji-Guang Li(李冀光), Ze-Qing Wu(吴泽清), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(1): 013101.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[10] Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine
Ling-Fang Li(李玲芳) and Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2021, 30(4): 044215.
[11] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[12] Photoluminescence of green nanophosphors Sr2MgSi2O7 doped with Tb3+ under 374-nm excitation
Bo-Shi Mu(牟博石), Yi Zhang(张熠), Qing-Feng Bian(边庆丰), Cheng-Ren Li(李成仁), Zhi-Chao Li(李志超), Yun-Ting Chu(褚云婷), Feng Zhao(赵峰), and Jing-Chang Sun(孙景昌). Chin. Phys. B, 2021, 30(12): 123201.
[13] Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor
Yong Yang(杨勇), Shuai-Jie Yang(杨帅杰), Wen-Li Yang(杨文莉), and Yun-Yi Wu(吴云翼). Chin. Phys. B, 2021, 30(12): 127401.
[14] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[15] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
No Suggested Reading articles found!