Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044201    DOI: 10.1088/1674-1056/19/4/044201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

A study of optical properties of a four-level atomic system via vacuum-induced coherence effects

Chen Jun(陈峻)a)d), Liu Zheng-Dong(刘正东)b)c), Zheng Jun(郑军)c), Pang Wei(庞玮)a), and You Su-Ping(尤素萍)e)
a Experimental Teaching Center, Guangdong University of Technology, Guangzhou 510006, China; b Engineering Research Center for Nanotechnology, Nanchang University, Nanchang 330047, China; c Institute of Modern Physics, Nanchang University, Nanchang 330031, China; d Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631, China; e Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  This paper studies the effects of vacuum-induced coherence (VIC) in a four-level atomic system. The effects of VIC lead to the coherent hole burnings exhibited in the system at some certain points of the Rabi frequency. This is also the reason for the enhancement of the coherent population trapping. In addition, optical bistability occurs in the evolution curves of absorption versus the phase of Rabi frequencies.
Keywords:  vacuum-induced coherence      quantum interference      coherent hole burning      optical bistability  
Received:  21 March 2009      Revised:  31 May 2009      Accepted manuscript online: 
PACS:  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  37.10.De (Atom cooling methods)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10464002 and 60768001) and the Youth Foundation of Guangdong University of Technology (Grant No.~072020).

Cite this article: 

Chen Jun(陈峻), Liu Zheng-Dong(刘正东), Zheng Jun(郑军), Pang Wei(庞玮), and You Su-Ping(尤素萍) A study of optical properties of a four-level atomic system via vacuum-induced coherence effects 2010 Chin. Phys. B 19 044201

[1] Agarwal G S 1974 Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches, Springer Tracts in Modern Physics: Quantum Optics }(Berlin: Springer-Verlag) Sec.15
[2] Hou B P, Wang S J, Yu W L and Sun W L 2004 Phys. Rev. A 69 053805
[3] Keitel C H 1999 Phys. Rev. Lett. 83 1307
[4] Anil K P and Agarwal G S 1999 Phys. Rev. A 59 3015
[5] Berman P R 1998 Phys. Rev. A 58 4886
[6] Hui R X, Cen Y Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
[7] Sunish M and Agarwal G S 1997 Phys. Rev. A 57 4014
[8] Sumanta D and Agarwal G S 2008 Phys. Rev. A 77 033850
[9] Yang G J, Xie M, Zhang Z and Wang K G 2008 Phys. Rev. A 77 063825
[10] Kiffner M, Evers J and Keitel C H 2006 Phys. Rev. Lett. 96 100403
[11] Eichmann U, Bergquist J C, Bollinger J J, Gilligan J M, Itano W M and Wineland D J 1993 Phys. Rev. Lett. 70 2359
[12] Francois D, Daniel R, Manas M, Carlos R, Jürgen E and Rainer B 2007 Phys. Rev. Lett. 98 183003
[13] Antón M A, Calderón O G and Carre\{n}o F 2005 Phys. Rev. A 72 023809
[14] Dong P and Gao J Y 2000 Phys. Lett. A 265 52
[15] Joshi A, Yang W and Xiao M 2004 Phys. Lett. A 325 30
[16] Wei G X, Wu J H, Wang H H, Li A, Kang Z H, Jiang Y and Gao J Y 2006 Phys. Rev. A 74 063820
[17] Korsunsky E A, Leinfellner N, Huss A, Baluschev S and Windholz L 1999 Phys. Rev. A 59 2302
[18] Zhang L Y, Liu Z D and Chen J 2005 Sci. Chin. G 48 593
[19] Chen J, Liu Z D and You S P 2006 Acta Phys. Sin. 55 6410 (in Chinese)
[20] Chen J, Liu Z D, Zheng J and Fang H J 2007 Acta Phys. Sin. 56 6441 (in Chinese)
[21] Zheng J, Liu Z D, Zeng F H and Fang H J 2008 Acta Phys. Sin. 57 4219 (in Chinese)
[22] Zhang L Y and Liu Z D 2005 Acta Phys. Sin. 54 3641 (in Chinese)
[23] Zeng F H, Liu Z D, Zheng J and Fang H J 2008 Acta Phys. Sin. 57 2218 (in Chinese)
[24] Zheng J, Liu Z D, Zeng F H and Fang H J 2008 Acta Phys. Sin. 57 7658 (in Chinese)
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[6] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[7] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[8] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
[9] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[10] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[11] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[12] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[13] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[14] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[15] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
No Suggested Reading articles found!