Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044202    DOI: 10.1088/1674-1056/19/4/044202
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Energy level formula for two moving charged particles with Coulomb coupling derived via the entangled state representations

Meng Xiang-Guo(孟祥国)a)†, Wang Ji-Suo(王继锁)a)b), and Liang Bao-Long(梁宝龙)a)
a Department of Physics, Liaocheng University, Liaocheng 252059, China; b College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  This paper derives energy level formula for two moving charged particles with Coulomb coupling by making full use of two mutually conjugate entangled state representations. These newly introduced entangled state representations seem to provide a direct and convenient approach for solving certain dynamical problems for two-body systems.
Keywords:  two-body dynamic problem      entangled state representation      energy level formula  
Received:  23 March 2009      Revised:  11 June 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No.~Y2008A23) and the Natural Science Foundation of Liaocheng University (Grant No.~X071049).

Cite this article: 

Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙) Energy level formula for two moving charged particles with Coulomb coupling derived via the entangled state representations 2010 Chin. Phys. B 19 044202

[1] Dirac P A M 1958 Principles of Quantum Mechanics (Oxford: Oxford University Press)
[2] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[3] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[4] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[5] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. A 35] 1831
[6] Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin. Phys. B 17 1791
[7] Meng X G, Wang J S and Li H Q 2008 Chin. Phys. B 17 2973
[8] Fan H Y and Fan Y 1999 Commun. Theor. Phys. 32 319
[9] Fan H Y and Fan Y 2002 Int. J. Mod. Phys. A 17 45
[10] Wang J S, Meng X G and Fan H Y 2008 Physica A 387 4453
[11] Wu Y and Yang X 2005 Opt. Lett. 30 311
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[5] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[6] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[7] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[8] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[9] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[12] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[13] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
[14] Quantum mechanical photoncount formula derived by entangled state representation
Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义). Chin. Phys. B, 2011, 20(8): 084203.
[15] Time evolution of distribution functions in dissipative environments
Hu Li-Yun(胡利云), Chen Fei(陈菲), Wang Zi-Sheng(王资生), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2011, 20(7): 074204.
No Suggested Reading articles found!