Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 035203    DOI: 10.1088/1674-1056/19/3/035203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of diffusive coefficient of electron heat pulse based on singular value decomposition in HT-7 tokamak

Li Er-Zhong(李二众), Ling Bi-Li(凌必利), Liu Yong(刘永), Ti Ang(提昂), Hu Li-Qun(胡立群), and Gao Xiang(高翔)
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  In this paper, singular value decomposition (SVD) as a filter-noise method is applied to electron cyclotron emission (ECE) diagnostic signals. The decomposed vectors contain the information about sawtooth such as the temporal vectors that show the sawtooth period and the spatial vectors that indicate the inverse radius. The propagation of electron heat pulse is investigated from electron cyclotron emission signals by using the perturbation method in HT-7 tokamak. The heat diffusivities are obtained at different densities in ohmic plasmas. The special result is that the heat diffusivity becomes larger as the heat pulse propagates outwards from the outside of the inverse radius.
Keywords:  electron cyclotron emission      ohmic plasma      heat diffusivity      tokamak  
Received:  25 February 2009      Revised:  01 September 2009      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.70.Gw (Radio-frequency and microwave measurements)  
  52.65.Vv (Perturbative methods)  
  52.25.Fi (Transport properties)  

Cite this article: 

Li Er-Zhong(李二众), Ling Bi-Li(凌必利), Liu Yong(刘永), Ti Ang(提昂), Hu Li-Qun(胡立群), and Gao Xiang(高翔) Analysis of diffusive coefficient of electron heat pulse based on singular value decomposition in HT-7 tokamak 2010 Chin. Phys. B 19 035203

[1] Shi Y J, Wan B N, Chen Z Y, Hu L Q, Lin S Y, Ruan H L, Qin J P, Zhen XJ, Ding B J, Kuang G L, Li J G and HT-7 Team 2005 Chin. Phys. 14 1193
[2] Takase Y, Goldston R J, Bell M G, Cavallo A, Fredrickson E D, Grek B,Hill K W, Mccune D C, Park H K and Schivell J F 1992 Nucl. Fusion 32 2246
[3] Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Gao Y D, Li W, Li X H,Duan X R and Yang Q W 2009 Chin. Phys. Lett. 26 035202
[4] Xu Y, Hu L Q, Wan B N and Shi Y J 2003 Plasma Sci. Technol. 5 1695
[5] Lopescardozo N J, Dehaas J C M, Hogeweij G M D, Orourke J, Sips A C Cand Tubbing B J D 1990 Plasma Phys. Control. Fusion 32 983
[6] Du Q, Ling B L, Ti A, Gao X, Fei Q S, Sajjad S and Xiong G 2008 PlasmaSci. Technol. 10 681
[7] Nardonet C 1992 Plasma Phys. Control. Fusion 34 1447
[8] Dong Y B, Pan C H, Liu Y and Fu B Z 2004 Plasma Sci. Technol. 6 2307
[9] Ma T P, Hu L Q, Wan B N, Ruan H L, Gao X, Zhen X J, Zhou L W, Sun Y W,Chen Z Y, Lin S Y and Kong W 2005 Chin. Phys. 14 2061
[10] Ma T P, Ruan H L, Hu L Q, Wan B N, Gao X, Zhen X J, Zhou L W, Sun Y W,Gao W, Chen Z Y, Lin S Y and Kong W 2006 Chin. Phys. 15 0593
[11] Lopescardozo N J and Sips A C C 1991 Plasma Phys. Control. Fusion 33 1337
[12] Callen J D and Jahns G L 1977 Phys. Rev. Lett. 38 491
[13] Pandya H K B, Jain K K and Aditya Team 2007 Plasma Phys. Control.Fusion 49 1809
[14] Shi Z B, Ding X T, Rao J, Li Y L, Deng W, Liu Z T, Liu Y and Zhou Y2007 Plasma Sci. Technol. 9 534
[15] Fredrickson E D, Janos A C, Mcguire K M, Scott S D, Taylor G and ChangZ 1993 Nucl. Fusion 33 1759
[16] Soler M and Callen J D 1979 Nucl. Fusion 19 703
[17] Sun H J, Ding X T, Yao L H, Rao J, Liu Z T, Huang Y, Dong C F, Li W,Duan X R, Yan Q W and Liu Y 2008 (Proc. 11th IAEA Meeting onH-mode Physics and Transport Barriers) J. Phys. Conference Series 123 012016
[18] Itoh K, Itoh S I, Fukuyama A, Yagi M and Azumi M 1994 PlasmaPhys. Control. Fusion 36 279
[19] Itoh K 1994 Plasma Phys. Control. Fusion 36 A307
[20] Itoh S I and Itoh K 1994 Plasma Phys. Control. Fusion 36 1845
[21] Itoh S I, Itoh K, Fukuyama and Yagi M 1994 Phys. Rev. Lett. 72 1200
[22] Itoh K, Itoh S I and Fukuyama A 1992 Phys. Rev. Lett. 69 1050
[23] Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293
[24] Tokuda S and Yoshino R 1999 Nucl. Fusion 39 1123
[25] Savrukhin P V 2002 Phys. Plasmas 9 3421
[26] Barnes C W and Strachan J D 1982 Nucl. Fusion 22 1090
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[5] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[6] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[7] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[8] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[9] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[10] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[11] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[12] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[13] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[14] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[15] Simulations of the L–H transition dynamics with different heat and particle sources
Li Hui-Dong (李会东), Wang Zhan-Hui (王占辉), Jan Weiland, Feng Hao (冯灏), Sun Wei-Guo (孙卫国). Chin. Phys. B, 2015, 24(11): 115204.
No Suggested Reading articles found!