Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 033301    DOI: 10.1088/1674-1056/19/3/033301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Study on wave packet dynamics of E1g+ state of Li2 with femtosecond-resolved photoelectron spectra

Liu Yu-Fang(刘玉芳), Liu Rui-Qiong(刘瑞琼), and Ding Jun-Xia(丁俊霞)
Department of Physics, Henan Normal University, Xinxiang 453007, China
Abstract  Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave packet theory is used to reasonably interpret the phenomena of the photoelectron spectra for different parameters. Our calculation shows that the loss of the wave packets in the shelf state area of $E^1\Sigma_{\rm g}^+$  plays a prominent role in the process of photoionization with the increase of the delay time. Moreover, the oscillation of the wave packet on the $E^1\Sigma_{\rm g}^+$ curve symbolizes a decreasing process of energy.
Keywords:  time-dependent wave packet      photoelectron spectra      pump-probe  
Received:  28 May 2008      Revised:  16 September 2009      Accepted manuscript online: 
PACS:  33.60.+q (Photoelectron spectra )  
  33.80.Eh (Autoionization, photoionization, and photodetachment)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~ 60977063 and 10574039), the Foundation for Key Program of Ministry of Education China (Grant No.~206084), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No.~084100510011), and the Innovation Talents of Institution of Higher Education of Henan Province, China (Grant No.~2006KYCX002).

Cite this article: 

Liu Yu-Fang(刘玉芳), Liu Rui-Qiong(刘瑞琼), and Ding Jun-Xia(丁俊霞) Study on wave packet dynamics of E1g+ state of Li2 with femtosecond-resolved photoelectron spectra 2010 Chin. Phys. B 19 033301

[1] Rosker M J, Rose T S and Zewail A H 1988 Chem. Phys. Lett. 146 175
[2] Zewail A H 1993 J. Phys. Chem. 97 12427
[3] Materny A, Herek J L, Cong P and Zewail A H 1994 J. Phys. Chem. 98 3352
[4] Polanyi J C and Zewail A H 1995 Acc. Chem. Res. 28 119
[5] Jouvet C, Martrenchard S, Solgadi D and Dedonder-Lardeux C 1997 J. Phys. Chem. A101 2555
[6] Charron E and Suzor-Weiner A 1998 J. Chem. Phys. 108 3922
[7] Greenblatt B J, Zanni M T and Neumark D M 1996 Chem. Phys. Lett. 258 523
[8] Zanni M T, Victor S B, Jefferys G B, William H M and Daniel M N 1999 J. Chem. Phys.110 3748
[9] Ge Y C, Kang K J and Li Y J 2005 Acta Phys. Sin. 54 2669 (in Chinese)
[10] Schmidt-Mink I, Muller W and Meyer W 1985 Chem. Phys. 92 263
[11] Bernheim R A, Gold L P and Tomczyk C A 1987 J. Chem. Phys. 87 861
[12] Uberna R, Amitay Z, Loomis R A and Leone S R 1999 J. Chem. Soc. Faraday Trans. 113 385
[13] Uberna R, Khail M, Williams R M, Papanikolas J M and Leone S R 1998 J. Chem. Phys.108 9259
[14] Williams R M, Papanikolas J M, Rathje J and Leone S R 1997 J. Chem. Phys.106 8310
[15] Ballard Joshua B, Dai X C, Arrowsmith Alan N, Lutz Huwel, StaufferHans U and Leone Stephen R 2005 Chem. Phys. Lett. 402 27
[16] Uberna R, Amitay Z, Qian C X W and Leone S R 2001 J. Chem. Phys. 114 10311
[17] Ballard J B, Stauffer H U, Mirowski E and Leone S R 2002 Phys. Rev. A 66 043402
[18] Papanikolas J M, Williams R M, Kleiber P D, Hart J L, Brink C, Price SD and Leone S R 1995 J. Chem. Phys. 103 7269
[19] Uberna R, Khalil M, William R M, Papanikolas J M and Leone S R 1998 J. Chem. Phys.108 9259
[20] Lorenzo P, Zohar A, Radoslaw U, Leone S R, Mark R and Ronnie K 2001 J. Chem. Phys. 114 1259
[21] Charron E and Raoult M 2006 Phys. Rev. A 74 033407
[22] Amitay Z, Ballard J B, Stauffer H U and Leone SR 2001 Chem. Phys. 267 141
[23] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[24] Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys.Chem. Chem. Phys. 5 2034
[25] Zhao M Y, Meng Q T, Xie T X, Han K L and He G Z 2005 Int.J. Quantum Chem. 101 153
[26] Meng Q T, Yang G H, Sun H L, Han K L and Lou N Q 2003 Phys. Rev. A 67 063202
[27] Wang S M, Cong S L, Yuan K J and Yu J 2005 Chem. Phys. Lett. 401 509
[28] Hu J, Meng Q T and Han K L 2004 Chem. Phys. Lett. 393 393
[29] Miao X Y, Wang L and Song H S 2007 Phys. Rev. A 75 042512
[30] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[31] Cong S L, Wang S M, Yu J and Yuan K J 2006 Chin. Phys. 15 1996
[32] Krause J L, Whitnell R M, Wilson K R and Yan Y J1993 J. Chem. Phys. 99 6562
[33] Zhang H, Han K L and Lou N Q 1999 Progress in Physics 19 2 (in Chinese)
[1] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[2] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[3] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[4] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[5] The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films
Shu-Fa Li(李树发), Chu-Yuan Cheng(程樗元), Kang-Kang Meng(孟康康), Chun-Lei Chen(陈春雷). Chin. Phys. B, 2019, 28(9): 097502.
[6] Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving
Shi-Chao Wu(吴士超), Li-Guo Qin(秦立国), Jian Lu(鹿建), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2019, 28(7): 074204.
[7] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[8] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[9] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[10] Opto-electromechanically induced transparency in a hybrid opto-electromechanical system
Hui Liu(刘慧), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2019, 28(10): 108502.
[11] Ultra-fast x-ray-dynamic experimental subsystem
Liming Chen(陈黎明), Xin Lu(鲁欣), Dazhang Li(李大章), Yifei Li(李毅飞). Chin. Phys. B, 2018, 27(7): 074101.
[12] Attosecond laser station
Hao Teng(滕浩), Xin-Kui He(贺新奎), Kun Zhao(赵昆), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074203.
[13] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[14] Wavelength dependence of electron localization of H2+ and its isotopomers in the UV-pump-probe scheme
Shan Xue(薛山), Hong-Chuan Du(杜洪川), Sheng-Jun Yue(岳生俊), Hong-Mei Wu(吴红梅), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2017, 26(5): 058201.
[15] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
No Suggested Reading articles found!