|
|
Bohmian mechanics to high-order harmonic generation |
Lai Xuan-Yang(赖炫扬)a)b), Cai Qing-Yu(蔡庆宇) a)†, and Zhan Ming-Sheng(詹明生)a)c) |
a State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China; b Graduate University of the Chinese Academy of Sciences, Beijing 100190, China; c Centre for Cold Atom Physics, The Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract This paper introduces Bohmian mechanics (BM) into the intense laser-atom physics to study high-order harmonic generation. In BM, the trajectories of atomic electron in an intense laser field can be obtained with the Bohm--Newton equation. The power spectrum with the trajectory of an atomic electron is calculated, which is found to be irregular. Next, the power spectrum associated with an atom ensemble from BM is considered, where the power spectrum becomes regular and consistent with that from quantum mechanics. Finally, the reason of the generation of the irregular spectrum is discussed.
|
Received: 06 April 2009
Revised: 15 May 2009
Accepted manuscript online:
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.50.-p
|
(Quantum optics)
|
|
Cite this article:
Lai Xuan-Yang(赖炫扬), Cai Qing-Yu(蔡庆宇), and Zhan Ming-Sheng(詹明生) Bohmian mechanics to high-order harmonic generation 2010 Chin. Phys. B 19 020302
|
[1] |
Burnett K, Reed V C and Knight P L 1993 J. Phys. B 26 561
|
[2] |
McPherson A, Gibson G, Jara H, Johann U, McIntyre I A, Boyer K andRhodes C K 1987 J. Opt. Soc. Am. B 4 595
|
[3] |
Ferray M, L'Huillier A, Li X F, Lompré L A, Mainfray G andManus C 1988 J. Phys. B 21 L31
|
[4] |
Zhou X X and Lin C D 2000 Phys. Rev. A 61 053411
|
[5] |
Qiao H X, Cai Q Y, Rao J G and Li B W 2002 Phys. Rev. A 65 063403
|
[6] |
Bian X B, Qiao H X and Shi T Y 2007 Chin. Phys. 16 1822
|
[7] |
Zhou Z Y and Yuan J M 2008 Chin. Phys. B 17 4523
|
[8] |
Zhou Z Y and Yuan J M 2007 Chin. Phys. 16 2623
|
[9] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[10] |
Salieres P, Carre B, Le Deroff L, Grasbon F, Paulus G G, Walther H,Kopold R, Becker W, Miloevi D B, Sanpera A and Lewenstein M 2001 Science 292 902
|
[11] |
Salieres P, L'Huillier A, Antoine Ph and Lewenstein M 1999 Adv. At. Mol. Opt. Phys. 41 83
|
[12] |
Eden J G 2004 Prog. Quantum Electron. 28 197
|
[13] |
Bandarage G, Maquet A and Cooper J 1990 Phys. Rev. A 41 1744
|
[14] |
Holland P R 1993 The Quantum Theory of Motion}(Cambridge: Cambridge University Press)
|
[15] |
Bohm D 1952 Phys. Rev. 85 166
|
|
[Bohm D 1952 Phys.Rev. 85 180
|
[16] |
Nikolic H 2008 Am. J. Phys. 76 143
|
[17] |
Wyatt R E 2005 Quantum Dynamics with Trajectories: Introduction toQuantum Hydrodynamics(New York: Springer)
|
[17a] |
Lopreore C L and Wyatt RE 1999 Phys. Rev. Lett. 82 5190
|
[18] |
Hirschfelder J O, Christoph A C and Palke W E 1975 J. Chem. Phys. 61 5435
|
[19] |
Dewdney C and Hiley B J 1982 Found. Phys. 12 27
|
[20] |
Philippidis C, Dewdney C and Hiley B 1979 Nuovo Cimento B 52 15
|
[20a] |
Philippidis C, Bohm D and Kaye R D 1982 Nuovo Cimento B 71 75
|
[21] |
Sanz A S, Borondo F and Miret-Artés S 2004 Phys. Rev. B 69115413
|
[21a] |
Sanz A S, Borondo F and Miret-Artés S 2004 J. Chem. Phys. 120 8794
|
[21b] |
Sanz A S, Borondo F and Miret-Artés S 2002 J.Phys.: Condens. Matter 146109
|
[21c] |
Sanz A S, Borondo F and Miret-Artés S 2001 Europhys.Lett. 55 303
|
[21d] |
Sanz A S, Borondo F and Miret-Artés S 2000 Phys. Rev. B 61 7743
|
[22] |
Sanz A S and Miret-Artés S 2005 J. Chem. Phys. 1 22 014702
|
[23] |
Oriols X 2007 Phys. Rev. Lett. 98 066803
|
[23a] |
Albareda G, Su?é J and Oriols X 2009 Phys. Rev. B 79 075315
|
[23b] |
Oriols X, Trois A and Blouin G 2004 Appl.Phys. Lett. 85 3596
|
[24] |
Dey B K, Askar A and Rabitz H 1998 J. Chem. Phys. 109 8770
|
[25] |
Wyatt R E 1999 J. Chem. Phys. 111 4406
|
[25a] |
Wyatt R E 1999 Chem. Phys. Lett. 31 3 189
|
[25b] |
Pettey L R andWyatt R E 2008 J. Phys. Chem. A 112 13335
|
[26] |
Dürr D, Goldstein S and Zanghi N 1992 J. Stat. Phys. 68 259
|
[27] |
Schwengelbeck U and Faisal F H M 1995 Phys. Lett. A 199 281
|
[27a] |
Schwengelbeck U and Faisal F H M 1995 Phys. Lett. A 207 31
|
[28] |
Partovi M H 2002 Phys. Rev. Lett. 89 144101
|
[29] |
Efthymiopoulos C and Contopoulos G 2006 J. Phys. A 39 1819
|
[30] |
Lai X Y, Cai Q Y and Zhan M S 2009 Eur. Phys. J. D 5 3 393
|
[31] |
Tong X M and Chu S I 1997 Chem. Phys. 2 17 119
|
[32] |
Kulander K C and Shore B W 1989 Phys. Rev. Lett. 62524
|
[33] |
L'Huillier A, Schafer K J and Kulander K C 1991 J. Phys. B 24 3315
|
[34] |
L'Huillier A, Balcou P, Candel S, Schafer K J andKulander K C 1992 Phys. Rev. A 46 2778
|
[35] |
L'Huillier A, Li X F and Lompre L A 1990 J. Opt. Soc.Am. B 7 527
|
[36] |
Akiyama Y, Midorikawa K, Matsunawa Y, Nagata Y, Obara M, Tashiro Hand Toyoda K 1992 Phys. Rev. Lett. 69 2176
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|