Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 128202    DOI: 10.1088/1674-1056/19/12/128202
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Relative energy dissipation-induced effective attraction in granular mixture

Jia Yan(贾燕), Yang Xian-Qing(杨先清), Deng Min(邓敏), Guo Hai-Ping(郭海萍), and Ye Jian-Lan(叶见兰)
College of Science, China University of Mining and Technology, Xuzhou 221116, China
Abstract  This paper presents the investigation of the clustering of the intruders in a vertically vibrated granular bed by means of event-driven simulations. The results indicate that the position of intruders in the vertical direction is not a key factor for their aggregation. Energy dissipation of the intruders and host particles are calculated in the process of intruder-host and host–host collisions. The relative energy dissipation of the intruders to that of the host particles is obtained. We find that clustering of the intruders happens when the relative energy dissipation is negative. The conclusion is verified when the restitution coefficient, density and diameter of the intruders are varied.
Keywords:  granular mixture      energy dissipation      cluster      event-driven simulations  
Received:  01 April 2010      Revised:  11 June 2010      Accepted manuscript online: 
PACS:  45.70.Mg (Granular flow: mixing, segregation and stratification)  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921002).

Cite this article: 

Jia Yan(贾燕), Yang Xian-Qing(杨先清), Deng Min(邓敏), Guo Hai-Ping(郭海萍), and Ye Jian-Lan(叶见兰) Relative energy dissipation-induced effective attraction in granular mixture 2010 Chin. Phys. B 19 128202

[1] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[2] Kadanoff L P 1999 Rev. Mod. Phys. 71 435
[3] Aranson I S and Tsimring L S 2006 Rev. Mod. Phys. 78 641
[4] Kudroll A 2004 Rep. Prog. Phys. 67 209
[5] Duran J, Rajchenbach J and Clement E 1993 Phys. Rev. Lett. 70 2431
[6] Knight J B, Jaeger H M and Nagel S R 1993 Phys. Rev. Lett. 70 3728
[7] Shinbrot T and Muzzio F J 1998 Phys. Rev. Lett. 81 4365
[8] Hong D C, Quinn P V and Luding S 2001 Phys. Rev. Lett. 86 3423
[9] Mobius M E, Lauderdale B E, Nagel S R and Jaeger H M 2001 Nature (London) 414 270
[10] Yan X, Shi Q, Hou M, Lu K and Chan C K 2003 Phys. Rev. Lett. 91 014302-1
[11] Hu M B, Kong X Z, Wu Q S and Wu Y H 2005 Chin. Phys. 14 1844
[12] Xia J H, You Y W, Wang P P, Wang W L and Liu C S 2010 Chin. Phys. B 19 056404
[13] Goldhirsch I and Zanetti G 1993 Phys. Rev. Lett. 70 1619
[14] Eggers J 1999 Phys. Rev. Lett. 83 5322
[15] Weele van der K, Meer van der D, Versluis M and Lohse D 2001 Europhys. Lett. 53 328
[16] Meer van der D, Weele van der K and Lohse D 2002 Phys. Rev. Lett. 88 174302-1
[17] Sanders D A, Swift M R, Bowley R M and King P J 2004 Phys. Rev. Lett. 93 208002-1
[18] Huerta D A and Ruiz-Suarez J C 2004 Phys. Rev. Lett. 92 114301-1
[19] Yang X Q, Zhou K, Qiu K and Zhao Y M 2006 Phys. Rev. E 73 031305-1
[20] Sanders D A, Swift M R, Bowley R M and King P J 2006 Europhys. Lett. 73 349
[21] Lui L T, Swift M R, Bowley R M and King P J 2008 Phys. Rev. E 77 020301-1
[22] Sanders D A, Swift M R, Bowley R M and King P J 2006 Appl. Phys. Lett. 88 264106
[23] Lui L T, Swift M R, Bowley R M and King P J 2007 Phys. Rev. E 75 051303-1
[24] Lubachevsky B D 1991 J. Comput. Phys. 94 255
[25] Herrmann H J and Luding S 1998 Continuum Mech. Themodyn. 10 189
[26] Brito R, Enriquez H, Godoy S and Soto R 2008 Phys. Rev. E 77 061301-1
[27] Serero D, Goldhirsch I, Noskowick S H and Tan M L 2006 J. Fluid Mech. 554 237
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[4] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[7] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[8] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[9] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[10] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[11] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[12] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[13] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[14] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[15] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
No Suggested Reading articles found!