Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 128203    DOI: 10.1088/1674-1056/19/12/128203
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Critical volume fraction and size for a colloidal cluster to nucleate

Zhao Dan-Dan(赵丹丹)a)b), Long Lian-Feng(龙联丰) a)b), and Xiao Chang-Ming(肖长明)a)b)†
Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China; b Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  With the aid of the critical size of colloidal cluster, the critical volume fraction of phase transition of colloidal system is determined by the principle of entropy maximum and Carnahan–Starling (CS) state equation in this paper. In our discussion, no parameter is introduced externally, and our results are in good agreement with the experimental results.
Keywords:  depletion interaction      nucleation packing      cluster  
Received:  06 January 2010      Revised:  04 July 2010      Accepted manuscript online: 
PACS:  64.70.K-  
  65.40.G- (Other thermodynamical quantities)  
  81.30.Hd (Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)  
  82.70.Dd (Colloids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10375024 and 10775018), the Science Foundation of Hunan Educational Committee of China (Grant Nos. 08B028 and 06B057), and the Natural Science Foundation of Hunan Province of China (Grant No. 08jj6043).

Cite this article: 

Zhao Dan-Dan(赵丹丹), Long Lian-Feng(龙联丰), and Xiao Chang-Ming(肖长明) Critical volume fraction and size for a colloidal cluster to nucleate 2010 Chin. Phys. B 19 128203

[1] Asakura S and Oosawa F 1954 J. Chem. Phys. 22 1255
[2] Vrij A 1976 Pure Appl. Chem. 48 471
[3] Puesy P N and Megen W 1986 Nature 320 340
[4] Xiao C M, Jin G J and Ma Y Q 2001 Chin. Phys. Lett. 18 950
[5] Xiao C M, Jin G J, Shi X D and Ma Y Q 2001 Phys. Rev. E 64 011402
[6] Xiao C M and Jonathan Wylie 2006 Phys. Lett. A 357 245
[7] Mansoori G A, Carnahan N F, Starling K E and Leland T W 1971 J. Chem. Phys. 54 1523
[8] Umar I H, Yokoyama I and Young W H 1976 Philos. Mag. 34 535
[9] Castaneda-Priego R, Rodr'higuez-López A and Méndez-Alcaraz J M 2006 Phys. Rev. E 73 051404
[10] Guo J Y, Huang L X and Xiao C M 2006 Chin. Phys. 15 1638
[11] Liu L, Xu S H, Liu J, Duan L, Sun Z W, Liu R X and Dong P 2006 Acta Phys. Sin. 55 6168 (in Chinese)
[12] Liu L, Xu S H, Sun Z W, Duan L, Xie J C and Lin H 2008 Acta Phys. Sin. 57 7367 (in Chinese)
[13] Huang L X, Gao H X and Xiao C M 2009 Acta Phys. Sin. 58 5864 (in Chinese)
[14] Dinsmore A D, Yodh A G and Pine D J 1995 Phys. Rev. E 52 4045
[15] Zhou S 2006 Phys. Rev. E 74 011402
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[4] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[7] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[8] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[9] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[10] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[11] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[12] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[13] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[14] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[15] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
No Suggested Reading articles found!