Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124203    DOI: 10.1088/1674-1056/19/12/124203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Scheme for direct measurement of Wigner function in two-mode cavity QED driven by classical fields

Wu Huai-Zhi(吴怀志), Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标)
Department of Physics and State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China
Abstract  We propose a scheme for the direct measurement of Wigner function in two-mode cavity QED. The atoms are sent to resonantly interact with two orthogonally polarized cavity modes in the presence of strong classical field. The probability of measuring the atom in the ground state directly gives the useful information of the cavity field. This method can be used for quantum non-demolition measurement of the photon number.
Keywords:  two-mode cavity      Wigner function      quantum non-demolition measurement  
Received:  30 December 2009      Revised:  01 June 2010      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974028), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20093514110009), the Natural Science Foundation of Fujian Province of China (Grant No. 2009J06002), and the Funds from the State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University.

Cite this article: 

Wu Huai-Zhi(吴怀志), Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标) Scheme for direct measurement of Wigner function in two-mode cavity QED driven by classical fields 2010 Chin. Phys. B 19 124203

1. Krause J, Scully M O, and Walther H 1986 Phys. Rev. A 34 2032
2. Scully M O, Walther H, Agarwal G S, Quang Tran and Schleich W 1991 Phys. Rev. A 44 5992
3. Dutra S M, Knight P L and Moya-Cessa H 1993 Phys. Rev. A48 3168
4. Bardroff P J, Mayr E and Schleich W P 1995 Phys. Rev. A 51 4963
5. Cirac J I, Zoller P and Blatt R 1996 Phys. Rev. A 53 R1966
6. Helon C D and Milburn G J 1996 Phys. Rev. A 54 R25
7. Zubairy M S 1998 Phys. Rev. A 57 2066
8. Wilkens M and Meystre P 1991 Phys. Rev. A 43 3832
9. Kim M S, Antesberger G, Bodendorf C T and Walther H 1998 Phys.Rev. A 58 R65
10 Lutterbach L G and Davidovich L 1997 Phys. Rev. Lett. 78 2547
11 Bertet P, Auffeves A, Maioli P, Osnaghi S, Meunier T, Brune M,Raimond J M and Haroche S 2002 Phys. Rev. Lett. 89 200402
12 Bardroff P J, Fontenelle M T and Stenholm S 1999 Phys. Rev. A 59 R950
13 Zou X B, Pahlke K and Mathis W 2004 Phys. Rev. A 69 015802
14 Kim M S and Agarwal G S 1999 Phys. Rev. A 59 3044
15 Zheng S B 2000 Aust. J. Phys. 53 429
16 Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
17 James D F V 2000 Fortschr. Phys. 48 823
18 Gleyzes S, Kuhr S, Guerlin C, Bernu J, Deléglise S, Hoff U B,Brune M, Raimond J M and Haroche S 2007 Nature (London) 446 297
19 Vahala K J 2003 Nature (London) 424 839
20 Solano E, de Matos Filho R L and Zagury N 1999 Phys. Rev. A 59 R2539
21 Zheng S B 2004 Chin. Phys. 13 187
22 Haroche S and Raimond J M 2006 Exploring the Quantum (Oxford:Oxford University Press) p.~313
23 Pereira S F, Ou Z Y and Kimble H J 1994 Phys. Rev. Lett.72 214
24 Peil S and Gabrielse G 1999 Phys. Rev. Lett. 83 1287
25 Kuzmich A, Mandel L, Janis J, Young Y E, Ejnisman R and Bigelow N P 1999 Phys. Rev. A 60 2346
26 Guerlin C, Bernu J, Deléglise S, Sayrin C, Gleyzes S, Kuhr S,Brune M, Raimond J M and Haroche S 2007 Nature (London) 448 889
27 Brune M, Bernu J, Guerlin C, Deléglise S, Sayrin C, Gleyzes S, Kuhr S, Dotsenko I, Raimond J M and Haroche S 2008 Phys. Rev. Lett. 101 240402
28 Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Cleland A N and Martinis J M 2008 Phys. Rev. Lett. 101 240401
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[3] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[4] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[5] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[6] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[7] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[8] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[9] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[12] Progress in superconducting qubits from the perspective of coherence and readout
Zhong You-Peng (钟有鹏), Li Chun-Yan (李春燕), Wang Hao-Hua (王浩华), Chen Yu (陈宇). Chin. Phys. B, 2013, 22(11): 110313.
[13] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[14] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[15] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
No Suggested Reading articles found!