CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Scheme for direct measurement of Wigner function in two-mode cavity QED driven by classical fields |
Wu Huai-Zhi(吴怀志)†, Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标)‡ |
Department of Physics and State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China |
|
|
Abstract We propose a scheme for the direct measurement of Wigner function in two-mode cavity QED. The atoms are sent to resonantly interact with two orthogonally polarized cavity modes in the presence of strong classical field. The probability of measuring the atom in the ground state directly gives the useful information of the cavity field. This method can be used for quantum non-demolition measurement of the photon number.
|
Received: 30 December 2009
Revised: 01 June 2010
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974028), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20093514110009), the Natural Science Foundation of Fujian Province of China (Grant No. 2009J06002), and the Funds from the State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University. |
Cite this article:
Wu Huai-Zhi(吴怀志), Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标) Scheme for direct measurement of Wigner function in two-mode cavity QED driven by classical fields 2010 Chin. Phys. B 19 124203
|
1. |
Krause J, Scully M O, and Walther H 1986 Phys. Rev. A 34 2032
|
2. |
Scully M O, Walther H, Agarwal G S, Quang Tran and Schleich W 1991 Phys. Rev. A 44 5992
|
3. |
Dutra S M, Knight P L and Moya-Cessa H 1993 Phys. Rev. A48 3168
|
4. |
Bardroff P J, Mayr E and Schleich W P 1995 Phys. Rev. A 51 4963
|
5. |
Cirac J I, Zoller P and Blatt R 1996 Phys. Rev. A 53 R1966
|
6. |
Helon C D and Milburn G J 1996 Phys. Rev. A 54 R25
|
7. |
Zubairy M S 1998 Phys. Rev. A 57 2066
|
8. |
Wilkens M and Meystre P 1991 Phys. Rev. A 43 3832
|
9. |
Kim M S, Antesberger G, Bodendorf C T and Walther H 1998 Phys.Rev. A 58 R65
|
10 |
Lutterbach L G and Davidovich L 1997 Phys. Rev. Lett. 78 2547
|
11 |
Bertet P, Auffeves A, Maioli P, Osnaghi S, Meunier T, Brune M,Raimond J M and Haroche S 2002 Phys. Rev. Lett. 89 200402
|
12 |
Bardroff P J, Fontenelle M T and Stenholm S 1999 Phys. Rev. A 59 R950
|
13 |
Zou X B, Pahlke K and Mathis W 2004 Phys. Rev. A 69 015802
|
14 |
Kim M S and Agarwal G S 1999 Phys. Rev. A 59 3044
|
15 |
Zheng S B 2000 Aust. J. Phys. 53 429
|
16 |
Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
|
17 |
James D F V 2000 Fortschr. Phys. 48 823
|
18 |
Gleyzes S, Kuhr S, Guerlin C, Bernu J, Deléglise S, Hoff U B,Brune M, Raimond J M and Haroche S 2007 Nature (London) 446 297
|
19 |
Vahala K J 2003 Nature (London) 424 839
|
20 |
Solano E, de Matos Filho R L and Zagury N 1999 Phys. Rev. A 59 R2539
|
21 |
Zheng S B 2004 Chin. Phys. 13 187
|
22 |
Haroche S and Raimond J M 2006 Exploring the Quantum (Oxford:Oxford University Press) p.~313
|
23 |
Pereira S F, Ou Z Y and Kimble H J 1994 Phys. Rev. Lett.72 214
|
24 |
Peil S and Gabrielse G 1999 Phys. Rev. Lett. 83 1287
|
25 |
Kuzmich A, Mandel L, Janis J, Young Y E, Ejnisman R and Bigelow N P 1999 Phys. Rev. A 60 2346
|
26 |
Guerlin C, Bernu J, Deléglise S, Sayrin C, Gleyzes S, Kuhr S,Brune M, Raimond J M and Haroche S 2007 Nature (London) 448 889
|
27 |
Brune M, Bernu J, Guerlin C, Deléglise S, Sayrin C, Gleyzes S, Kuhr S, Dotsenko I, Raimond J M and Haroche S 2008 Phys. Rev. Lett. 101 240402
|
28 |
Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Cleland A N and Martinis J M 2008 Phys. Rev. Lett. 101 240401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|