Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 123202    DOI: 10.1088/1674-1056/19/12/123202

A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition

Wang Wen-Li(王文丽) and Xu Xin-Ye(徐信业)
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  We report the experimental results on measuring the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition by using a quite simple and novel method. It benefits from the advantages of the modulation transfer spectroscopy in an ytterbium hollow cathode lamp and the Doppler-free spectroscopy in a collimated ytterbium atomic beam. The key technique in this experiment is simultaneously measuring the frequency separations of the two spectra twice, and the separation difference between two measurements is solely determined by the well-defined frequency of an acousto-optics modulator. Compared with the most of previously reported experimental results, ours are more accurate and completed, which will provide the useful information for developing a more accurate theoretical model to describe the interaction inside an ytterbium atom.
Keywords:  isotope shift      hyperfine splitting      modulation transfer spectroscopy      ytterbium  
Received:  27 December 2009      Revised:  16 June 2010      Accepted manuscript online: 
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774044), the National Key Basic Research and Development Program of China (Grant No. 2010CB922903), the Science Foundation of the Science and Technology Commission of Shanghai Municipality of China (Grant No. 07JC14019), and the Shanghai Pujiang Talent Program of China (Grant No. 07PJ14038).

Cite this article: 

Wang Wen-Li(王文丽) and Xu Xin-Ye(徐信业) A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition 2010 Chin. Phys. B 19 123202

[1] Hall J L, Zhu M and Buch P 1989 J. Opt. Soc. Am. B 6 2194
[2] DeMille D 1995 Phys. Rev. Lett. 74 4165
[3] Natarajan V 2005 Euro. Phys. J. D 32 33
[4] Ma H L 2005 Chin. Phys. 14 511
[5] Lu J, Ma H L and Wang C T 2003 Acta Phys. Sin. 52 566 (in Chinese)
[6] Ma H L and Tang J Y 2001 Acta Phys. Sin. 50 453 (in Chinese)
[7] Chen M H, Chen Z J, Li G W, Li M S, Lu F Q, Ma H L, Peng X J and Yang F J 2000 Acta Phys. Sin. 49 1256 (in Chinese)
[8] Budick B and Snir J 1969 Phys. Rev. 178 18
[9] Baumann M, Leining H and Lindel H 1977 Phys. Lett. A 59 433
[10] Liening H 1985 Z. Phys. A 320 363
[11] Grundevik P, Gustavsson M, Rosen A and Rydberg S 1979 Z. Phys. A 292 307
[12] Berends R W and Maleki L 1992 J. Opt. Soc. Am. B 9 332
[13] Deilamian K, Gilaspy J D and Kelleher D E 1993 J. Opt. Soc. Am. B 10 789
[14] Loftus T, Bochinski J R and Mossberg T W 2001 Phys. Rev. A 63 023402
[15] Das D, Barthwal S, Banerjee A and Natarajan V 2005 Phys. Rev. A 72 032506
[16] Honda K, Takahashi Y, Kuwamoto T, Fujimoto M, Toyoda K, Ishikawa K and Yabuzaki T 1999 Phys. Rev. A 59 R934
[17] Rapol U D, Krishna A, Wasan A and Natarajan V 2004 Euro. Phys. J. D 29 409
[18] Shirley J H 1982 Opt. Lett. 7 537
[19] Eble J F and Schmidt-Kaler F 2007 Appl. Phys. B 88 563
[20] Chaiko Y 1966 Opt. Spectrosc. 20 424
[21] Das D and Natarajan V 2007 Phys. Rev. A 76 062505
[22] Banerjee A, Rapol U D, Das D, Krishna A and Natarajan V 2003 Europhys. Lett. 63 340
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[5] Isotope shift of the 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions of Li-like Ca ions
Denghong Zhang(张登红), Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟). Chin. Phys. B, 2021, 30(4): 043102.
[6] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[7] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[8] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[9] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[10] Determination of static dipole polarizabilities of Yb atom
Zhi-Ming Tang(唐志明), Yan-Mei Yu(于艳梅), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(6): 063101.
[11] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[12] Modulation transfer spectroscopy based on acousto-optic modulator with zero frequency shift
Chen-Fei Wu(吴晨菲), Xue-Shu Yan(颜学术), Li-Xun Wei(卫立勋), Pei Ma(马沛), Jian-Hui Tu(涂建辉), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(11): 114203.
[13] Diode-pumped passively mode-locked sub-picosecond Yb:LuAG ceramic laser
Jiang-Feng Zhu(朱江峰), Kai Liu(刘凯), Jiang Li(李江), Jun-Li Wang(王军利), Yang Yu(于洋), Hui-Bo Wang(汪会波), Zi-Ye Gao(高子叶), Teng-Fei Xie(谢腾飞), Chao-Yu Li(李超宇), Yu-Bai Pan(潘裕柏), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2017, 26(5): 054213.
[14] Tunable second harmonic generation from a Kerr-lens mode-locked Yb: YCa4O(BO3)3 femtosecond laser
Zi-Ye Gao(高子叶), Jiang-Feng Zhu(朱江峰), Zheng-Mao Wu(吴正茂), Zhi-Yi Wei(魏志义), Hao-Hai Yu(于浩海), Huai-Jin Zhang(张怀金), Ji-Yang Wang(王继扬). Chin. Phys. B, 2017, 26(4): 044202.
[15] Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II
Jianpeng Liu(刘建鹏), Jiguang Li(李冀光), Hongxin Zou(邹宏新). Chin. Phys. B, 2017, 26(2): 023104.
No Suggested Reading articles found!