|
|
Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II |
Jianpeng Liu(刘建鹏)1, Jiguang Li(李冀光)2, Hongxin Zou(邹宏新)1 |
1 Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China;
2 Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Accurate isotope shift factors of the 2s2p 3,1P1-2s21S0 transitions in B II, obtained with the multi-configuration Dirac-Hartree-Fock and the relativistic configuration interaction methods, are reported. We found a linear correlation relation between the mass shift factors and the energies for the transitions concerned, considering all-order electron correlations. This relation is important for estimating the uncertainty in the calculation of isotope shift factors. These atomic data can be used to extract the nuclear mean-square charge radii of the boron isotopes with halo structures or to resolve the high precise spectroscopy of B II in astronomical observation.
|
Received: 17 October 2016
Revised: 16 November 2016
Accepted manuscript online:
|
PACS:
|
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
31.15.ve
|
(Electron correlation calculations for atoms and ions: ground state)
|
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91436103, 11404025, and 91536106), the Research Program of National University of Defense Technology, China (Grant No. JC15-0203), and the China Postdoctoral Science Foundation (Grant No. 2014M560061). |
Corresponding Authors:
Jiguang Li, Hongxin Zou
E-mail: li_jiguang@iapcm.ac.cn;hxzou@nudt.edu.cn
|
Cite this article:
Jianpeng Liu(刘建鹏), Jiguang Li(李冀光), Hongxin Zou(邹宏新) Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II 2017 Chin. Phys. B 26 023104
|
[1] |
Tanihata I, Hamagaki H, Hashimoto O, Shida Y, Yoshikawa N, Sugimoto K, Yamakawa O, Kobayashi T and Takahashi N 1985 Phys. Rev. Lett. 55 2676
|
[2] |
Nörtershäuser W, Tiedemann D, Žáková M, et al. 2009 Phys. Rev. Lett. 102 062503
|
[3] |
Orts R S, Harman Z, Crespo Lóez-Urrutia J R, et al. 2006 Phys. Rev. Lett. 97 103002
|
[4] |
Yan Z C, Nörtershäuser W and Drake G W F 2008 Phys. Rev. Lett. 100 243002
|
[5] |
Pálffy A 2010 Contemp. Phys. 51 471
|
[6] |
Cheal B an6d Flanagan K T 2010 J. Phys. G: Nucl. Part. Phys. 27 113101
|
[7] |
Lee J, Chen J and Leanhardt A E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 075003
|
[8] |
Charlwood F C, Billowesa J, Campbella P, et al. 2010 Phys. Lett. B 690 346
|
[9] |
Kluge H 2010 Hyper. Interact. 196 295
|
[10] |
Minamisono T, Ohtsubo T, Minami I, et al. 1992 Phys. Rev. Lett. 69 (14) 2058
|
[11] |
Aguilera E F, Martinez-Quiroz E, Lizcano D, et al. 2009 Phys. Rev. C 79 021601
|
[12] |
Negoita F, Borcea C, Carstoiu F, et al. 1996 Phys. Rev. C 54 1787
|
[13] |
Tanihata I 1988 Nucl. Phys. A 488 113
|
[14] |
Litzén U, Zethson T, Jösson P et al. 1998 Phys. Rev. A 57 2477
|
[15] |
Federman S R, Lambert D L, Cardelli J A and Sheffer Y 1996 Nature 381 764
|
[16] |
King F W, Quicker D and Langer J 2011 J. Chem. Phys. 134 124114
|
[17] |
Komasa J, Rychlewski J and Jankowski K 2002 Phys. Rev. A 65 042507
|
[18] |
Gálvez F J, Buendia E and Sarsa A 1999 J. Chem. Phys. 111 10903
|
[19] |
Jönsson P, Fischer C F and Godefroid M 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1233
|
[20] |
Jönsson P, Johansson S G and Fischer C F 1994 Astrophys. J. Lett. 429 L45-L48
|
[21] |
Nazé C, Verdebouta S, Rynkun P, et al. 2014 At. Data Nucl. Data Tables 100 1197
|
[22] |
Korol V A and Kozlov M G 2007 Phys. Rev. A 76 022103
|
[23] |
Godefroid M, Jönsson P and Fischer C F 1998 Phys. Scr. T78 33
|
[24] |
Carette T and Godefroid M 2011 Phys. Rev. A 83 062505
|
[25] |
Carette T, Drag C, Scharf O, et al. 2010 Phys. Rev. A 81 042522
|
[26] |
Carette T and Godefroid M 2016 arXiv: 1602.06574p
|
[27] |
Tupitsyn I I, Shabaev V M, Crespo Lóez-Urrutia J R, et al. 2003 Phys. Rev. A 68 022511
|
[28] |
Gaidamauskas E, Nazé C, Rynkun P, et al. 2011 J. Phys. B: At. Mol. Opt. Phys. 44 175003
|
[29] |
Torbohm G, Fricke B and Rosén A 1985 Phys. Rev. A 31 2038
|
[30] |
Blundell S A, Baird P E G, Palmer C W P, Stacey D N and Woodgate G K 1987 J. Phys. B: At. Mol. Phys. 20 3663
|
[31] |
Li J G, Jösson P, Godefroid M, et al. 2012 Phys. Rev. A 052523
|
[32] |
Fischer C F, Brage T and Jösson P 1997 Computational Atomic Structure: An MCHF Approach (Bristol and Philadelphia: Institute of Physics Publishing)
|
[33] |
Jönsson P, He X, Fischer C F and Grant I 2007 Comput. Phys. Commun. 177 597
|
[34] |
Jönsson P, Gaigalas G, Bierón J, Fischer C F and Grant I 2013 Comput. Phys. Commun. 184 2197
|
[35] |
Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M and Jönsson P 2013 Comput. Phys. Commun. 184 2187
|
[36] |
Godefroid M, Fischer C F and Jönsson P 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1079
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|