Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114203    DOI: 10.1088/1674-1056/27/11/114203

Modulation transfer spectroscopy based on acousto-optic modulator with zero frequency shift

Chen-Fei Wu(吴晨菲)1,2, Xue-Shu Yan(颜学术)2,3, Li-Xun Wei(卫立勋)4, Pei Ma(马沛)4, Jian-Hui Tu(涂建辉)4, Jian-Wei Zhang(张建伟)2,3, Li-Jun Wang(王力军)1,2,3
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China;
3 Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
4 National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China

We present a modulation transfer spectroscopy (MTS) configuration based on an acousto-optic modulator by using a variant of the typical double pass structure. One beam is modulated by using an acousto-optic modulator in opposite diffraction order to cancel the carrier frequency shift and produce a modulated pump beam. The line shape performance is investigated theoretically and experimentally. Laser frequency stabilization of the proposed configuration is demonstrated for the 133Cs|62S1/2, F=4> →|62 P3/2, F'=5> transition. The Allan deviations, which are measured by using beat note signals and the three-cornered hat method, are 3.6×10-11 in an integration time of 100 s and approximately 4×10-11 in a longer integration time.

Keywords:  modulation transfer spectroscopy      laser stabilization  
Received:  13 June 2018      Revised:  31 July 2018      Accepted manuscript online: 
PACS:  42.30.Lr (Modulation and optical transfer functions)  
  42.62.Fi (Laser spectroscopy)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302101), the Foundation of China Academy of Space Technology, and the Initiative Program of State Key Laboratory of Precision Measurement Technology and Instruments, China.

Corresponding Authors:  Jian-Wei Zhang, Jian-Wei Zhang     E-mail:;

Cite this article: 

Chen-Fei Wu(吴晨菲), Xue-Shu Yan(颜学术), Li-Xun Wei(卫立勋), Pei Ma(马沛), Jian-Hui Tu(涂建辉), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军) Modulation transfer spectroscopy based on acousto-optic modulator with zero frequency shift 2018 Chin. Phys. B 27 114203

[1] Millett-Sikking A, Hughes I G, Tierney P and Cornish S L 2007 J. Phys. B:At. Mol. Opt. 40 187
[2] Corwin K L, Lu Z T, H, C F, Epstein R J and Wieman C E 1998 Appl. Opt. 37 3295
[3] Harris M L, Cornish S L, Tripathi A and Hughes I G 2008 J. Phys. B:At. Mol. Opt. 41 085401
[4] Choi G W and Noh H R 2016 Opt. Commun. 367 312
[5] Yoshikawa Y, Umeki T, Mukae T, Torii Y and Kuga T 2003 Appl. Opt. 42 6645
[6] Tiwari V B, Singh S, Mishra S R, Rawat H S and Mehendale S C 2006 Appl. Phys. B 83 93
[7] Torrance J S, Sparkes B M, Turner L D and Scholten R E 2016 Opt. Express 24 11396
[8] Zhang Z, Wang X and Lin Q 2009 Opt. Express 17 10372
[9] Shirley J H 1982 Opt. Lett. 7 537
[10] Eble J F and Schmidt-Kaler F 2007 Appl. Phys. B 88 563
[11] Zhang S, Zhang X, Cui J, Jiang Z, Shang H, Zhu C, Chang P, Zhang L, Tu J and Chen J 2017 Rev. Sci. Instrum. 88 103106
[12] Sun D, Zhou C, Zhou L, Wang J and Zhan M 2016 Opt. Express 24 10649
[13] Zi F, Wu X, Zhong W, Parker R H, Yu C, Budker S, Lu X and Muller H 2017 Appl. Opt. 56 2649
[14] McCarron D J, King S A and Cornish S L 2008 Meas. Sci. Technol. 19 105601
[15] Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F and Lin Q 2014 Chin. Phys. B 23 104222
[16] Luo Y K, Yan S H, Jia A A, Wei C H, Li Z H, Wang E L and Yang J 2016 Chin. Opt. Lett. 14 121401
[17] Negnevitsky V and Turner L D 2013 Opt. Express 21 3103
[18] Zhang J, Wei D, Xie C and Peng K 2003 Opt. Express 11 1338
[19] Bertinetto F, Cordiale P, Galzerano G and Bava E 2001 IEEE T. Instrum. Meas. 50 490
[20] Jaatinen E and Hopper D J 2008 Opt. Lasers Eng. 46 69
[21] Jaatinen E, Hopper D J and Back J 2009 Meas. Sci. Technol. 20 025302
[1] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[2] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[3] An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g
Hu Yong-Qi (胡永奇), Dong Jing (董靖), Huang Jun-Chao (黄军超), Li Tang (李唐), Liu Liang (刘亮). Chin. Phys. B, 2015, 24(10): 104213.
[4] Laser frequency stabilization and shifting by usingmodulation transfer spectroscopy
Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Wu Bin (吴彬), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2014, 23(10): 104222.
[5] Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp
Wang Wen-Li(王文丽), Ye Jie(叶捷), Jiang Hai-Ling(蒋海灵), Bi Zhi-Yi(毕志毅), Ma Long-Sheng(马龙生), and Xu Xin-Ye(徐信业). Chin. Phys. B, 2011, 20(1): 013201.
[6] A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition
Wang Wen-Li(王文丽) and Xu Xin-Ye(徐信业). Chin. Phys. B, 2010, 19(12): 123202.
No Suggested Reading articles found!