Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113403    DOI: 10.1088/1674-1056/19/11/113403
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Investigation of the lateral spread of erbium ions implanted in silicon crystal

Qin Xi-Feng(秦希峰)a)b), Chen Ming(陈明)a), Wang Xue-Lin(王雪林)a)c), Liang Yi(梁毅)b), and Zhang Shao-Mei(张少梅) a)
a School of Physics, Shandong University, Jinan 250100, China; b College of Science, Shandong Jian Zhu University, Jinan 250101, China; c State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The erbium ions at energy of 400 keV and dose of 5×1015 ions/cm2 were implanted into silicon single crystals at room temperature at the angles of 0°, 45°and 60°. The lateral spread of 400 keV erbium ions implanted in silicon sample was measured by the Rutherford backscattering technique. The results show that the measured values were in good agreement with those obtained from the prediction of TRIM'98 (Transport of Ions in Matter) and SRIM2006 (Stopping and Range of Ions in Matter) codes.
Keywords:  erbium ion implantation      silicon      Rutherford backscattering technique      lateral spread  
Received:  19 January 2010      Revised:  30 March 2010      Accepted manuscript online: 
PACS:  61.72.uf (Ge and Si)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975094 and 10735070), the National Basic Research Program of China (Grant No. 2010CB832906), Program for New Century Excellent Talents in University, Ministry of Education of China (Grant No. NCET-07-0516) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 10422-2007B1).

Cite this article: 

Qin Xi-Feng(秦希峰), Chen Ming(陈明), Wang Xue-Lin(王雪林), Liang Yi(梁毅), and Zhang Shao-Mei(张少梅) Investigation of the lateral spread of erbium ions implanted in silicon crystal 2010 Chin. Phys. B 19 113403

[1] Lindhard J, Scharff M and Schiott H E 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 1
[2] Zhang Z L 2002 Chin. Phys. 11 389
[3] Grande P L, Fichtner P F P, Behar M and Zawislak F C 1988 it Nucl. Instr. Methods B 35 17
[4] Wang K M, Shi B R, Guo H Y, Wang W and Ding P J 1996 Mater. Sci. Eng. B 39 133
[5] Biersack J P 1982 Z. Phys. A 305 95
[6] Su L B, Yang W Q, Dong Y J, Xu J and Zhou G Q 2004 Acta Phys. Sin. 53 3956 (in Chinese)
[7] Furukawa S and Matsumyra H 1973 Appl. Phys. 22 97
[8] Morvan E, Mestres, Pascual J, Flores D, Vellvehi M and Rebollo J 1999 Mater. Sci. Eng. B 61--62 373
[9] Wang K M, Shi B R, Cue Nelson, Meng M Q, Lu F, Wang F X , Li W and Shen D Y 2000 J. Phys. D: Appl. Phys. 33 1764
[10] Chen F, Tan Y and Rodenas A 2008 Opt. Express 16 16209
[11] Ennen H, Schneider J, Pomrenke G and Axmann A 1983 Appl. Phys. Lett. 43 943
[12] Lei H B, Yang Q Q and Wang Q M 1998 Acta Phys. Sin. 47 1201 (in Chinese)
[13] Przybylinska H, Jantsch W, Suprun-Belevitch, Stepikhova M, Palmetshofer L, Hendorfer G, Kozanecki A, Wilson R J and Sealy B J 1996 Phys. Rev. B 54 2532
[14] Chen C Y, Chen W D, Wang Y Q, Song S F and Xu Z J 2003 it Acta Phys. Sin. 52 736 (in Chinese)
[15] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Y H, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 3044
[16] Hansson G V, Du W X, Elfving A and Duteil F 2001 Appl. Phys. Lett. 78 2104
[17] Wang J Z, Shi Z Q, Lou H N, Zhang X L, Zuo Z W, Pu L, Ma E, Zhang R, Zheng Y L, Lu F and Shi Y 2009 Acta Phys. Sin. 58 4243 (in Chinese)
[18] Palmetshofer L, Gritsch M and Hobler G 2001 Mater. Sci. Eng. B 81 83
[19] Li Y, Tan C, Xia Y, Zhang J, Xue C, Xu H and Liu P 2000 it Appl. Phys. A 71 689
[20] Ziegler J F http://www.srim.org
[21] Chu W K, Mayer J W and Nicolet M A 1978 Backscattering Spectrometry (New York: Academic) Chap 5, p137
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[7] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[8] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[9] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[10] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[11] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[12] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[13] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[14] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[15] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
No Suggested Reading articles found!