Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107304    DOI: 10.1088/1674-1056/19/10/107304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Study and optimal simulation of 4H–SiC floating junction Schottky barrier diodes' structures and electric properties

Nan Ya-Gong(南雅公)a)b)†, Pu Hong-Bin(蒲红斌) a), Cao Lin(曹琳)a), and Ren Jie(任杰)a)
a Department of Electric Engineering, Faculty of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China; b Department of Physics and Electronics, Hexi University, Zhangye 734000, Gansu Province, China
Abstract  This paper stuides the structures of 4H–SiC floating junction Schottky barrier diodes. Some structure parameters of devices are optimized with commercial simulator based on forward and reverse electrical characteristics. Compared with conventional power Schottky barrier diodes, the devices are featured by highly doped drift region and embedded floating junction layers, which can ensure high breakdown voltage while keeping lower specific on-state resistance, and solve the contradiction between forward voltage drop and breakdown voltage. The simulation results show that with optimized structure parameter, the breakdown voltage can reach 4.36 kV and the specific on-resistance is 5.8 m$\Omega$·cm2 when the Baliga figure of merit value of 13.1 GW/cm2 is achieved.
Keywords:  4H–SiC      floating junction      Schottky barrier diode      optimization  
Received:  16 July 2009      Revised:  05 April 2010      Accepted manuscript online: 
PACS:  61.72.S- (Impurities in crystals)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.-c (Electronic transport in interface structures)  
  73.61.Le (Other inorganic semiconductors)  
  85.30.Kk (Junction diodes)  
Fund: Project supported by the Open Fund of Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Ministry of Education of China.

Cite this article: 

Nan Ya-Gong(南雅公), Pu Hong-Bin(蒲红斌), Cao Lin(曹琳), and Ren Jie(任杰) Study and optimal simulation of 4H–SiC floating junction Schottky barrier diodes' structures and electric properties 2010 Chin. Phys. B 19 107304

[1] Yu L C and Sheng K 2008 IEEE Trans. Electron Devices 55 1961
[2] Adachi K, Omura I, Ono R, Nishio J, Shinohe T, Ohashi H and Arai K 2003 Mater. Sci. Forum 433--436 887
[3] Hatakeyamaa T, Nishiob J and Shinohec T 2005 Mater. Sci. Forum 483--485 921
[4] Ota C, Nishio J, Hatakeyama T, Shinohe T, Kojima K, Nishizawa S and Ohashi H 2006 Mater. Sci. Forum 527--529 1175
[5] Ota C, Nishio J, Hatakeyama T, Shinohe T, Kojima K, Nishizawa S and Ohashi H 2007 Mater. Sci. Forum 556--557 881
[6] Saitoh W, Omura I, Tokano K, Ogura T and Ohashi H 2002 Proc. ISPSD'02 pp. 34--36
[7] Saitoh W, Omura I, Tokano K, Ogura T and Ohashi H 2004 IEEE Trans. Electron Devices 51 797
[8] Nishio J, Ota C, Hatakeyama T, Shinohe T, Kojima K, Nishizawa S and Ohashi H 2008 IEEE Trans. Electron Devices 55 1955
[9] Pu H B, Cao L, Chen Z M and Ren J 2009 J. Semicond. 30 1
[10] Ma L and Gao Y 2009 Acta Phys. Sin. 58 530 (in Chinese)
[11] Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C and Ren L L 2010 Acta Phys. Sin. 59 567 (in Chinese)
[12] Wang C L and Sun J 2009 Chin. Phys. B 18 1232
[13] Song Q W, Zhang Y M, Zhang Y M, L"u H L, Chen F P and Zheng Q L 2009 Chin. Phys. B 18 5474 endfootnotesize
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[3] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[4] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[5] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[6] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[7] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[8] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[9] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[10] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[11] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[12] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[13] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[14] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[15] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
No Suggested Reading articles found!