Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107103    DOI: 10.1088/1674-1056/19/10/107103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical study of small Mo clusters and molecular nitrogen adsorption on Mo clusters

Lei Xue-Ling(雷雪玲)
College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
Abstract  This paper studies the small molybdenum clusters of Mon (n=2–8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structures of Mon clusters show the onset of a structural transition from a close-packed structure towards a body-centred cubic structure occurred at n=7. An analysis of adsorption energies suggests that the Mo2 is of high inertness and Mo6 cluster is of high activity against the adsorption of N2. Calculated results indicate that the N2 molecule prefers end-on mode by forming a linear or quasi-linear structure Mo–N–N, and the adsorption of nitrogen on molybdenum clusters is molecular adsorption with slightly elongated N–N bond. The electron density of highest occupied molecular orbital and lowest unoccupied molecular orbital, and the partial density of states of representative cluster are also used to characterize the adsorption properties of N2 on the sized Mon clusters.
Keywords:  density functional theory      molybdenum clusters      adsorption property      N2 molecule  
Received:  21 May 2010      Revised:  29 June 2010      Accepted manuscript online: 
PACS:  36.40.Cg (Electronic and magnetic properties of clusters)  
  64.70.K-  
  68.43.Mn (Adsorption kinetics ?)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Be (Transition metals and alloys)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10964012), and the Prior Developing Subject Foundation of Xinjiang Normal University.

Cite this article: 

Lei Xue-Ling(雷雪玲) Theoretical study of small Mo clusters and molecular nitrogen adsorption on Mo clusters 2010 Chin. Phys. B 19 107103

[1] Guvelioglu G H, Ma P, He X, Forrey R C and Cheng H 2006 Phys. Rev. B 73 155436
[2] Lei X L, Wang X M, Zhu H J and Luo Y H 2009 Chin. Phys. B 18 2264
[3] Daniel M C and Astruc D 2004 Chem. Rev. 104 293
[4] Conceicao J, Laaksonen R T, Wang L, Guo S T, Nordlander P and Smalley R E 1995 Phys. Rev. B 51 4668
[5] Zhao W, Wang J D, Liu F B and Chen D R 2009 Acta Phys. Sin. 58 3352 (in Chinese)
[6] Luo W H, Meng D Q, Li G and Chen H C 2008 Acta Phys. Sin. 57 160 (in Chinese)
[7] Ding X, Li Z, Yang J, Hou J G and Zhu Q 2004 J. Chem. Phys. 120 9594
[8] Sheng X F, Zhao G F and Zhi L L 2008 J. Phys. Chem. C 112 17828
[9] Bérces A, Mitchell Steven A and Zgierski Marek Z 1998 J. Phys. Chem. A 102 6340
[10] Zhang X, Ding X, Fu Q and Yang J 2008 Journal of Molecular Structure: THEOCHEM 867 17
[11] Kim Y D, Stolcic D, Fischer M and Gantefor G 2003 J. Chem. Phys. 119 10307
[12] Toshiaki M, Tomoko N, Masataka N and Tokio Y 2001 J. Phys. Chem. B 105 3235
[13] Mitchell S A, Rayner D M, Bartlett T and Hackett P A 1996 J. Chem. Phys. 104 4012
[14] Mitchell S A, Lian L, Rayner D M and Hackett P A 1995 J. Chem. Phys. 103 5539
[15] Lotta H, Mats A and Arne R 1998 J. Chem. Phys. 109 3232
[16] Pis Diez R 2000 Int. J. Quantum Chem. 76 105
[17] Min B J, Wang C Z and Ho K M 2001 J. Korean Phys. Soc. 39 741
[18] Zhang W, Ran X and Zhao H 2004 J. Chem. Phys. 121 7717
[19] Aguilera-Granja F, Vega A and Gallego L J 2008 Nanotechnology 19 145704
[20] Delley B 2000 J. Chem. Phys. 92 508
[21] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[22] Mulliken R S 1955 J. Chem. Phys. 23 1841
[23] Jung K Y, Fletcher D A and Steimle T C 1994 J. Mol. Spectrosc. 165 448
[24] Morse M D 1986 Chem. Rev. 86 1049
[25] Bates J K and Gruen D M 1979 J. Mol. Spectrosc. 78 284
[26] Huber K and Herzberg G 1979 Molecular Spectra and Molecular Structure V.4 Constants of Diatomic Molecules 2nd edn. (New York: Van Nostrand Reinhold)
[27] Delley B, Freeman A J and Ellis D E 1983 Phys. Rev. Lett. 50 488
[28] Andzelm J, Radzio E and Salahub D R 1985 J. Chem. Phys. 83 4573
[29] Lee S, Bylander D M and Kleinman L 1988 Phys. Rev. B 37 10035
[30] Goodgame M M and Goddard III W A 1985 Phys. Rev. Lett. 54 661
[31] Yanagisawa S, Tsuneda T and Hirao K 2001 J. Comput. Chem. 22 1995
[32] Boudreaux E A and Baxter E 2001 Int. J. Quantum Chem. 85 509
[33] Efremov Y M, Samoilova A N, Kozhukhovsky V B and Gurvich L V 1978 J. Mol. Spectrosc. 73 430
[34] Hopkins J B, Langridge-Smith P R R, Morse M D and Smalley R E 1983 J. Chem. Phys. 78 1627 endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
No Suggested Reading articles found!