Abstract The energy band structure of spin-1 condensates with repulsive spin-independent and either ferromagnetic or antiferromagnetic spin-dependent interactions in one-dimensional (1D) periodic optical lattices is discussed. Within the two-mode approximation, Bloch bands of spin-1 condensates are presented. The results show that the Bloch bands exhibit a complex structure as the atom density of mF=0 hyperfine state increases: bands splitting, reversion, intersection and loop structure are excited subsequently. The complex band structure should be related to the tunneling and spin-mixing dynamics.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774120 and 10975114), the Natural Science Foundation of Gansu Province of China (Grant No. 3ZS051-A25-013), and the Natural Science Foundation of Northwest Normal University of China (Grant Nos. NWNU-KJCXGC-03-48 and NWNU-KJCXGC-03-17).
Cite this article:
Li Zhi(李志), Zhang Ai-Xia(张爱霞), Ma Juan(马娟), and Xue Ju-Kui(薛具奎) Energy band structure of spin-1 condensates in optical lattices 2010 Chin. Phys. B 19 100306
[1]
Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stengerand J and Ketterle W 1998 emphPhys. Rev. Lett. 80 2027
[2]
Chang M S, Hamley C D, Barrett M D, Sauer J A, Fortier K M, Zhang W, You L and Chapman M S 2004 emphPhys. Rev. Lett. 92 140403
[3]
Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 emphNature 396 345
[4]
Matuszewski M, Alexander T J and Kivshar Yuri S 2008 emphPhys. Rev. A 78 023632
[5]
Matuszewski M, Alexander T J and Kivshar Yuri S 2009 emphPhys. Rev. A 80 023602
[6]
Gu Q and Qiu H 2007 emphPhys. Rev. Lett. 98 200401
[7]
Ohmi M and Machida K 1998 emphJ. Phys. Soc. Jpn. 67 1822
[8]
Ji A C, Liu W M , Song J L and Zhou F 2008 emphPhys. Rev. Lett. 101 010402
[9]
Law C K, Pu H and Bigelow N P 1998 emphPhys. Rev. Lett. 81 5257
[10]
Qi R, Yu X L, Li Z B and Liu W M 2009 emphPhys. Rev. Lett. 102 185301
[11]
Pu H, Law C K, Raghavan S, Eberly J H and Bigelow N P 1999 emphPhys. Rev. A 60 1463
[12]
Zhang W X, Zhou D L, Chang M S, Chapman M S and You L 2005 emphPhys. Rev. A 72 013602
[13]
Black A T, Gomez E, Turner L D, Jung S and Lett P D 2007 emphPhys. Rev. Lett. 99 070403
[14]
Zhao X D, Xie Z W and Zhang W P 2007 emphActa Phys. Sin. 56 6358 (in Chinese)
[15]
Wen L H, Liu M, Kong L B, Chen A X and Zhan M S 2005 emphChin. Phys. 14 0690
[16]
Ieda J, Miyakawa T and Wadati M 2004 emphPhys. Rev. Lett. 93 194102
[17]
Li L, Li Z, Malomed B, Michalache D and Liu W M 2005 emphPhys. Rev. A 72 033611
[18]
Zhang W X, M"ustecapliouglu "O E and You L 2007 emphPhys. Rev. A 75 043601
[19]
Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Carretero-Gonz'alez R 2008 emphPhys. Rev. A 77 033612
[20]
Morsch O and Oberthaler M 2006 emphRev. Mod. Phys. 78 179
[21]
Alexander T J, Ostrovskaya E A and Kivshar Yuri S 2006 emphPhys. Rev. Lett. 96 040401
[22]
Xue J K and Zhang A X 2008 emphPhys. Rev. Lett. 101 180401
[23]
Xue J K, Zhang A X and Liu J 2008 emphPhys. Rev. A 77 013602
[24]
Widera A, Gerbier F, F"olling S, Gericke T, Mandel O and Bloch I 2005 emphPhys. Rev. Lett. 95 190405
[25]
Widera A, Gerbier F, F"olling S, Gericke T, Mandel O and Bloch I 2006 emphPhys. Rev. A 73 041602(R)
[26]
Xie Z W, Zhang W, Chui S T and Liu W M 2004 emphPhys. Rev. A 69 053609
[27]
Dcabrowska-W"u B J, Ostrovskaya Elena A, Alexander Tristram J and Kivshar Yuri S 2007 emphPhys. Rev. A 75 023617
[28]
Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 emphPhys. Rev. Lett. 86 1402
[29]
Wu B, Diener R B and Niu Q 2002 emphPhys. Rev. A 65 025601 endfootnotesize
Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
Epitaxial fabrication of monolayer copper arsenide on Cu(111) Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.