Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2912-2919    DOI: 10.1088/1674-1056/18/7/049
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Degraded model of radiation-induced acceptor defects for GaN-based high electron mobility transistors (HEMTs)

Fan Long(范隆)a)†, Hao Yue(郝跃)b)c)d), Zhao Yuan-Fu(赵元富)a), Zhang Jin-Cheng(张进城)b)c)d), Gao Zhi-Yuan(高志远)b) c) d), and Li Pei-Xian(李培咸)b)c)d)
a Beijing Microelectronics Technology Institute, Beijing 100076, China; b The School of Microelectronics, Xidian University, Xi'an 710071, China; Key Laboratory of Fundamental Science for National Defense of Wide Bandgap Semiconductor Technology, Xidian University, Xi'an 710071, China; Key Laboratory for Wide Band-gap Semiconductor Materials and Devices of Ministry of Education, Xidian University, Xi'an 710071, China
Abstract  Using depletion approximation theory and introducing acceptor defects which can characterize radiation induced deep-level defects in AlGaN/GaN heterostructures, we set up a radiation damage model of AlGaN/GaN high electron mobility transistor (HEMT) to separately simulate the effects of several main radiation damage mechanisms and the complete radiation damage effect simultaneously considering the degradation in mobility. Our calculated results, consistent with the experimental results, indicate that thin AlGaN barrier layer, high Al content and high doping concentration are favourable for restraining the shifts of threshold voltage in the AlGaN/GaN HEMT; when the acceptor concentration induced is less than 1014cm-3, the shifts in threshold voltage are not obvious; only when the acceptor concentration induced is higher than 1016cm-3, will the shifts of threshold voltage remarkably increase; the increase of threshold voltage, resulting from radiation induced acceptor, mainly contributes to the degradation in drain saturation current of the current--voltage (I--V) characteristic, but has no effect on the transconductance in the saturation area.
Keywords:  GaN-based high electron mobility transistor (HEMT) radiation      acceptor      defects  
Received:  15 April 2007      Revised:  05 November 2008      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  61.72.uj (III-V and II-VI semiconductors)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Defense Scientific and Technical Pre-Research Program of China (Grant Nos 51311050112, 51308040301 and 51308030102), the National Defense Fundamental Research Program of China (Grant No A1420060156), and the National Basic Research Program of China (Grant No 513270407).

Cite this article: 

Fan Long(范隆), Hao Yue(郝跃), Zhao Yuan-Fu(赵元富), Zhang Jin-Cheng(张进城), Gao Zhi-Yuan(高志远), and Li Pei-Xian(李培咸) Degraded model of radiation-induced acceptor defects for GaN-based high electron mobility transistors (HEMTs) 2009 Chin. Phys. B 18 2912

[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[5] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[6] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[7] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[8] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[9] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[10] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[11] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[12] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[13] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[14] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[15] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
No Suggested Reading articles found!