Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(3): 888-893    DOI: 10.1088/1674-1056/18/3/007
GENERAL Prev   Next  

The influences of dipole--dipole interaction and detuning on the sudden death of entanglement between two atoms in the Tavis--Cummings model

Chen Li(陈丽)a), Shao Xiao-Qiang(邵晓强)b), and Zhang Shou(张寿)a)b)†
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China; b Center for the Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract  The influences of dipole--dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis--Cummings model have been investigated by means of Wootters' concurrence, respectively. The results show that the entanglement between the two atoms can be enhanced via appropriately tuning the strength of dipole--dipole interaction of two atoms or the detunings between atom and cavity, and the so-called sudden death effect can be weakened simultaneously.
Keywords:  concurrence      sudden death of entanglement      dipole--dipole interaction      detuning  
Received:  01 May 2008      Revised:  19 September 2008      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60667001).

Cite this article: 

Chen Li(陈丽), Shao Xiao-Qiang(邵晓强), and Zhang Shou(张寿) The influences of dipole--dipole interaction and detuning on the sudden death of entanglement between two atoms in the Tavis--Cummings model 2009 Chin. Phys. B 18 888

[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[7] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[8] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[9] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[10] Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing
Lei Xiang(向磊), Xing Zhang(张星), Jian-Wei Zhang(张建伟), Yong-Qiang Ning(宁永强), Werner Hofmann, Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(7): 074209.
[11] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[12] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[13] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[14] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[15] Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium
Wu Qin (吴琴), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(3): 034203.
No Suggested Reading articles found!