Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034203    DOI: 10.1088/1674-1056/23/3/034203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium

Wu Qin (吴琴)a b, Zhang Zhi-Ming (张智明)a
a Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006, China;
b School of Information Engineering, Guangdong Medical College, Dongguan 523808, China
Abstract  In this paper, the entanglement dynamics of two two-level atoms trapped in coupled cavities with a Kerr medium is investigated. We find that the phenomena of entanglement sudden death (ESD) and entanglement sudden birth (ESB) appear during the evolution process. The influences of initial atomic states, Kerr medium, and cavity–cavity hopping rate on the atom–atom entanglement are discussed. The results obtained by the numerical method show that the atom–atom entanglement is strengthened and even prevented from ESD with increasing cavity–cavity hopping rate and Kerr nonlinearity.
Keywords:  entanglement sudden death      concurrence      coupled cavities      Kerr medium  
Received:  03 April 2013      Revised:  18 June 2013      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 60978009 and 61378012), the Science and Technology Project of Zhanjiang, China (Grant No. 2011C3103007), and the Science Research Project in Guangdong Medical College, China (Grant No. xk1120).
Corresponding Authors:  Zhang Zhi-Ming     E-mail:  zmzhang@scnu.edu.cn

Cite this article: 

Wu Qin (吴琴), Zhang Zhi-Ming (张智明) Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium 2014 Chin. Phys. B 23 034203

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bennett C H and Divincenzo D P 2000 Nature 404 247
[3] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[4] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[5] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
[6] Ikram M, Li Fl and Zubairy M S 2007 Phys. Rev. A 75 062336
[7] Almeida M P, de Melo F, Hor-Merll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
[8] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
[9] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[10] Kimble H J 2008 Nature 453 1023
[11] Yönac M and Eberly J H 2008 Opt. Lett. 33 270
[12] Yang Q, Yang M and Gao Z L 2008 Chin. Phys. Lett. 25 825
[13] Yang R C, Li J, Wang J M and Zhang T C 2011 Commun. Theor. Phys 56 429
[14] Ouyang X C, Fang M F, Kang G D, Deng X J and Huang L Y 2010 Chin. Phys. B 19 030309
[15] Shan C J and Xia Y J 2006 Acta Phys. Sin. 55 1585 (in Chinese)
[16] Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 022323
[17] Ogden C D, Irish E K and Kim M S 2008 Phys. Rev. A 78 063805
[18] Pado S and Antonio Q 2012 Phys. Rev. A 86 043811
[19] Hartmann M J, Brandão F G S L and Plenio M B 2006 Nature Phys. 2 849
[20] Hartmann M J, Brandão F G S L and Plenio M B 2008 Laser Photonics Rev. 2 527
[21] Lin G W, Zou X B, Lin X M and Guo G C 2009 Appl. Phys. Lett. 95 224102
[22] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[23] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[24] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[25] Zheng S B 2009 Appl. Phys. Lett. A 94 154101
[26] Zheng S B, Yang Z B and Xia Y 2010 Phys. Rev. A 81 015804
[27] Song J, Sun X D, Xia Y and Song H S 2011 Phys. Rev. A 83 052309
[28] Schwendimann P and Quattropani A 2012 Phys. Rev. A 86 043811
[29] Peng J, Wu Y W and Li X J 2012 Chin. Phys. B 21 060302
[30] Pan G X, Xiao R J and Zhou L 2013 Chin. Phys. B 22 010307
[31] Yang R C, Zhang P F, Guo Y Q and Zhang T C 2012 Commun. Theor. Phys. 57 195
[32] Wootters K 1998 Phys. Rev. Lett. 80 2245
[33] Amitabh J and Puri R R 1992 Phys. Rev. A 45 5056
[34] Lukin M D and Imamoğlu A 2001 Nature 413 273
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[5] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[6] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[7] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[8] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[9] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[10] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[11] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[12] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[13] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[14] Controllable preparation of two-mode entangled coherent states in circuit QED
Ji Ying-Hua (嵇英华), Liu Yong-Mei (刘咏梅). Chin. Phys. B, 2014, 23(11): 110303.
[15] Relation between initial conditions and entanglement sudden death for two-qubit extended Werner-like states
Yang Bai-Yuan (杨百元), Fang Mao-Fa (方卯发), Huang Jiang (黄江). Chin. Phys. B, 2013, 22(8): 080303.
No Suggested Reading articles found!