Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(12): 5491-5495    DOI: 10.1088/1674-1056/18/12/060
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Differential conductance in normal metal/insulator/metal/d-wave superconductor junction carrying a supercurrent

Li Xiao-Wei(李晓薇)
Department of Physics, Huaiyin Teachers College, Huaian 223001, China;Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Techers College, Huaian 223001, China
Abstract  This paper applies the Bogoliubov--de Gennes equation and the Blonder--Tinkham--Klapwijk approach to study the oscillatory behaviour of differential conductance in a normal metal/insulator/metal/d-wave superconductor junction carrying a supercurrent Is. We find that (i) a three-humped structure appears at a nearly critical supercurrent Is and z ≈ 0.5 for the normal metal/insulator/metal/d$_{x^2+u^2}$ -wave superconductor junction; (ii) the zero-bias conductance peak splits into two peaks with sufficiently large applied current for the normal metal/insulator/metal/dxy-wave superconductor junction; (iii) the conductance spectrum exhibits oscillating behaviour with the bias voltage and the peaks of the resonances are suppressed by increasing supercurrent Is.
Keywords:  d-wave superconductor      conductance      supercurrent  
Received:  03 March 2009      Revised:  05 July 2009      Accepted manuscript online: 
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Fy  
  74.25.Sv (Critical currents)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Provincial Education Commission of China (Grant No 06KJB140009).

Cite this article: 

Li Xiao-Wei(李晓薇) Differential conductance in normal metal/insulator/metal/d-wave superconductor junction carrying a supercurrent 2009 Chin. Phys. B 18 5491

[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[3] On the origin of the anomalous sign reversal in the Hall effect in Nb thin films
Dan Zhou(周丹), Han-Song Zeng(曾寒松), Rujun Tang(汤如俊), Zhihong Hang(杭志宏), Zhiwei Hu(胡志伟), Zixi Pei(裴子玺), and Xinsheng Ling(凌新生). Chin. Phys. B, 2022, 31(3): 037403.
[4] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[5] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[6] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[7] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[8] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[9] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[10] Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(10): 107301.
[11] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[12] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[13] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[14] General theories and features of interfacial thermal transport
Hangbo Zhou(周杭波), Gang Zhang(张刚). Chin. Phys. B, 2018, 27(3): 034401.
[15] Thermal properties of transition-metal dichalcogenide
Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2018, 27(3): 034402.
No Suggested Reading articles found!