Please wait a minute...
Chinese Physics, 2007, Vol. 16(12): 3803-3908    DOI: 10.1088/1009-1963/16/12/041
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First principle study of nitrogen vacancy in aluminium nitride

Ye Hong-Gang(耶红刚), Chen Guang-De(陈光德), Zhu You-Zhang(竹有章), and Lü Hui-Min(吕惠民)
Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy ($V_{\rm N})$ in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration, density of states, and formation energies of various charge states are calculated. Two defect states are introduced by the defect, which are a doubly occupied single state above the valance band maximum (VBM) and a singly occupied triple state below the conduction band minimum (CBM) for wurtzite AlN and above the CBM for zinc-blende AlN. So $V_{\rm N}$ acts as a deep donor in wurtzite AlN and a shallow donor in zinc-blende AlN. A thermodynamic transition level $E(3+/+)$ with very low formation energy appears at 0.7 and 0.6eV above the VBM in wurtzite and zinc-blende structure respectively, which may have a wide shift to the low energy side if atoms surrounding the defect are not fully relaxed. Several other transition levels appear in the upper part of the bandgap. The number of these levels decreases with the structure relaxation. However, these levels are unimportant to AlN properties because of their high formation energy.
Keywords:  aluminium nitride      density of states      defect state      formation energy  
Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.J- (Point defects and defect clusters)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  71.20.Nr (Semiconductor compounds)  
  71.55.Eq (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No~10474078).

Cite this article: 

Ye Hong-Gang(耶红刚), Chen Guang-De(陈光德), Zhu You-Zhang(竹有章), and Lü Hui-Min(吕惠民) First principle study of nitrogen vacancy in aluminium nitride 2007 Chinese Physics 16 3803

[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[3] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[4] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[5] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[6] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[7] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[8] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[9] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
[10] The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study
Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影). Chin. Phys. B, 2017, 26(4): 046303.
[11] Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations
M A Ali, M R Khatun, N Jahan, M M Hossain. Chin. Phys. B, 2017, 26(3): 033102.
[12] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[13] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[14] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
[15] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
No Suggested Reading articles found!