Please wait a minute...
Chinese Physics, 2006, Vol. 15(8): 1806-1809    DOI: 10.1088/1009-1963/15/8/029
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Characteristics of selective oxidation during the fabrication of vertical cavity surface emitting laser

Hao Yong-Qin(郝永芹)a), Zhong Jing-Chang(钟景昌)a), Ma Jian-Li(马建立)a), Zhang Yong-Ming(张永明)b), and Wang Li-Jun(王立军)c)
a National Key Lab of High-Power Semiconductor Lasers,Changchun University of Science and Technology, Changchun 130022, China; b Material & Engineering College, Shenyang Institute of Chemical Technology, Shenyang 110142, China; c Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China
Abstract  Taking into account oxidation temperature, N2 carrier gas flow, and the geometry of the mesa structures this paper investigates the characteristics of selective oxidation during the fabrication of the vertical cavity surface emitting laser (VCSEL) in detail. Results show that the selective oxidation follows a law which differs from any reported in the literature. Below 435℃ selective oxidation of Al0.98Ga0.02As follows a linear growth law for the two mesa structures employed in VCSEL. Above 435℃ approximately increasing parabolic growth is found, which is influenced by the geometry of the mesa structures. Theoretical analysis on the difference between the two structures for the initial oxidation has been performed, which demonstrates that the geometry of the mesa structures does influence on the growth rate of oxide at higher temperatures.
Keywords:  laser technique      selective oxidation      vertical-cavity surface-emitting laser      quantum-well      semiconductor laser  
Received:  17 December 2005      Revised:  02 February 2006      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  81.65.Mq (Oxidation)  

Cite this article: 

Hao Yong-Qin(郝永芹), Zhong Jing-Chang(钟景昌), Ma Jian-Li(马建立), Zhang Yong-Ming(张永明), and Wang Li-Jun(王立军) Characteristics of selective oxidation during the fabrication of vertical cavity surface emitting laser 2006 Chinese Physics 15 1806

[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[5] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[6] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[7] Dynamic characteristics in an external-cavity multi-quantum-well laser
Sen-Lin Yan(颜森林). Chin. Phys. B, 2018, 27(6): 060501.
[8] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[9] 4.3 THz quantum-well photodetectors with high detection sensitivity
Zhenzhen Zhang(张真真), Zhanglong Fu(符张龙), Xuguang Guo(郭旭光), Juncheng Cao(曹俊诚). Chin. Phys. B, 2018, 27(3): 030701.
[10] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[11] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[12] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[13] Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells
Shitao Liu(刘诗涛), Zhijue Quan(全知觉), Li Wang(王立). Chin. Phys. B, 2017, 26(3): 038104.
[14] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[15] Research of the use of silver nanowires as a current spreading layer on vertical-cavity surface-emitting lasers
Xia Guo(郭霞), Lei Shi(史磊), Chong Li(李冲), Jian Dong(董建), Bai Liu(刘白), Shuai Hu(胡帅), Yan He(何艳). Chin. Phys. B, 2016, 25(11): 114208.
No Suggested Reading articles found!