Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120401    DOI: 10.1088/1674-1056/24/12/120401
GENERAL Prev   Next  

Unstable and exact periodic solutions of three-particles time-dependent FPU chains

Liu Qi-Huai (刘期怀)a b, Xing Ming-Yan (邢明燕)a, Li Xin-Xiang (李新祥)c, Wang Chao (王超)d
a School of Mathematics and Computing Sciences, Guilin University of Electronic Technology, Guilin 541002, China;
b Guangxi Experiment Center of Information Science, Guilin 541001, China;
c College of Sciences, Shanghai University, Shanghai 200444, China;
d School of Mathematic Sciences, Yancheng Teacher's University, Yancheng 224002, China
Abstract  For lower dimensional Fermi-Pasta-Ulam (FPU) chains, the α-chain is completely integrable and the Hamiltonian of the β-chain can be identified with the Hénon-Heiles Hamiltonian. When the strengths α, β of the nonlinearities depend on time periodically with the same frequencies as the natural angular frequencies, the resonance phenomenon is inevitable. In this paper, for certain periodic functions α(t) and β(t) with resonance frequencies, we give the existence and stability of some nontrivial exact periodic solutions for a one-dimensional α β-FPU model composed of three particles with periodic boundary conditions.
Keywords:  periodic solution      stability      method of averaging  
Received:  20 April 2015      Revised:  18 August 2015      Accepted manuscript online: 
PACS:  04.20.Jb (Exact solutions)  
  02.60.-x (Numerical approximation and analysis)  
  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11301106, 11201288, and 11261013), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2014GXNSFBA118017), the Innovation Project of Graduate Education of Guangxi Zhuang Autonomous Region, China, (Grant No. YCSZ2014143), and the Guangxi Experiment Center of Information Science (Grant No. YB1410).
Corresponding Authors:  Xing Ming-Yan     E-mail:  xinxiang.lee@t.shu.edu.cn

Cite this article: 

Liu Qi-Huai (刘期怀), Xing Ming-Yan (邢明燕), Li Xin-Xiang (李新祥), Wang Chao (王超) Unstable and exact periodic solutions of three-particles time-dependent FPU chains 2015 Chin. Phys. B 24 120401

[1] Fermi E, Pasta J and Ulam S 1955 Los Alamos Report LA-1940 977
[2] Hu X G and Tang Y 2008 Chin. Phys. B 17 426805
[3] Hou Q W and Cao B Y 2012 Chin. Phys. B 21 014401
[4] Giardiná C and Livi R 1998 J. Stat. Phys. 91 1027
[5] Rink B 2001 Commun. Math. Phys. 218 665
[6] Rink B and Verhulst F 2000 Physica A 285 467
[7] Benettin G, Christodoulidi H and Ponno A 2013 J. Stat. Phys. 152 195
[8] Pettini M, Casetti L, Cerruti-Sola M, Franzosi R, and Cohen E 2015 Chaos 15 015106
[9] Antonopoulos C and Bountis T 2006 Phys. Rev. E 73 056206
[10] Bountis T and Skokos H 2012 FPU recurrences and the transition from weak to strong chaos, in: Complex Hamiltonian Dynamics (Berlin/Heidelberg: Springer) pp. 133-134
[11] Penati T, Flach S 2007 Chaos 17 023102
[12] Flach S, Ivanchenko M V and Kanakov O I 2008 Am. J. Phys. 76 453
[13] Xu Q and Tian Q 2013 Chin. Phys. B 22 086302
[14] Sasa S and Komatsu T S 1999 Phys. Rev. Lett. 82 912
[15] Torres P J 2000 Z. Angew. Math. Phys. 51 333
[16] Torres P J 2001 Z. Angew. Math. Phys. 52 535
[17] Sun J and Ma S 2014 J. Math. Anal. Appl. 417 622
[18] Diblík J, FEĆKAN M and Pospíšil M 2013 Miskolc Math. Notes 14 63
[19] Gendelman O 2013 Phys. Rev. E 87 062911
[20] Zhou Q, Lv B B, and Tian Q 2009 Acta Phys. Sin. 58 411 (in Chinese)
[21] Yuan Z Q, Zhu M, and Zheng Z G 2013 Acta Phys. Sin. 62 080504 (in Chinese)
[22] Jia L L, Liu Q H, and Ma Z J 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2715
[23] Ellison J A and Shih H 1995 “The method of averaging in beam dynamics”, in: Accelerator Physics at the Superconducting Super Collider (AIP Publishing) p. 590
[24] Bogoliubov N and Mitropol'skiî I 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations (New York: Gordon and Breach) pp. 387-412
[25] Sanders J A, Verhulst F, and Murdock J A 2007 Averaging Methods in Nonlinear Dynamical Systems (New York: Springer) pp. 33-50
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!