Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050201    DOI: 10.1088/1674-1056/24/5/050201
GENERAL   Next  

Augmented Lyapunov approach to H state estimation of static neural networks with discrete and distributed time-varying delays

M. Syed Ali, R. Saravanakumar
Department of Mathematics, Thiruvalluvar University, Vellore-632115, Tamil Nadu, India
Abstract  This paper deals with H state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H state estimation is proposed to estimate the H performance and global asymptotic stability of the concerned neural networks. By constructing the Lyapunov–Krasovskii functional and using the linear matrix inequality technique, sufficient conditions for delay-dependent H performances are obtained, which can be easily solved by some standard numerical algorithms. Finally, numerical examples are given to illustrate the usefulness and effectiveness of the proposed theoretical results.
Keywords:  distributed delay      H state estimation      neural networks      stability analysis  
Received:  11 September 2014      Revised:  07 December 2014      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
  02.30.Ks (Delay and functional equations)  
  05.45.-a (Nonlinear dynamics and chaos)  
  02.10.Yn (Matrix theory)  
Fund: Project supported by the Fund from National Board of Higher Mathematics (NBHM), New Delhi (Grant No. 2/48/10/2011-R&D-II/865).
Corresponding Authors:  M. Syed Ali     E-mail:  syedgru@gmail.com
About author:  02.30.Hq; 02.30.Ks; 05.45.-a; 02.10.Yn

Cite this article: 

M. Syed Ali, R. Saravanakumar Augmented Lyapunov approach to H state estimation of static neural networks with discrete and distributed time-varying delays 2015 Chin. Phys. B 24 050201

[1] Haykin S 1994 Neural Networks: A Comprehensive Foundation (New York: Prentice Hall)
[2] Syed Ali M and Balasubramaniam P 2011 Commun. Nonlinear. Sci. Numer. Simulat. 16 2907
[3] Wang H, Yu Y and Wen G 2014 Neural Netw. 55 98
[4] Syed Ali M 2014 Int. J. Mach. Learn. Cyber. 5 13
[5] Syed Ali M 2014 Chin. Phys. B 23 060702
[6] Li H 2014 Neurocomputing 138 78
[7] Chen Y and Wu Y 2009 Neurocomputing 72 1065
[8] Syed Ali M 2014 Iranian Journal of Fuzzy Systems 11 1
[9] Syed Ali M and Marudai M 2011 Math. Comput. Modell. 54 1979
[10] Syed Ali M 2011 Chin. Phys. B 20 080201
[11] Wu S L and Li K L and Huang T Z 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3947
[12] Wang J, Jiang H and Hu C 2014 Neurocomputing 142 542
[13] Syed Ali M and Saravanakumar R 2014 Chin. Phys. B 23 120201
[14] Syed Ali M and Saravanakumar R 2014 Appl. Math. Comput. 249 510
[15] Lakshmanan S, Park J H, Jung H Y, Kwon O M and Rakkiyappan R 2013 Neurocomputing 111 81
[16] Duan Q, Su H and Wu Z G 2012 Neurocomputing 97 16
[17] Huang H, Huang T and Chen X 2013 IEEE Trans. Circuits Syst. Express Briefs 60 371
[18] Phat V N and Trinh H 2013 Neural. Comput. Applic. 22 323
[19] Huang H and Feng G 2009 IEEE Trans. Circuits Syst. I Reg. Papers 56 846
[20] Mathiyalagan K, Sakthivel R and Anthoni S M 2012 Int. J. Adapt. Control Signal Process. 28 429
[21] Boyd B, Ghoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadephia: SIAM)
[22] Gu K, Kharitonov V L and Chen J 2003 Stability of Time Delay Systems (Boston: Birkhuser)
[23] Huang H, Feng G and Cao J 2008 IEEE Trans. Neural Netw. 1329 1329
[24] Kwon O M, Park J H and Lee S M 2010 J. Optim. Theory Appl. 145 343
[25] Liu Z W and Zhang H G 2010 Acta Automat. Sin. 36 147
[26] Senthilkumar T and Balasubramaniam P 2011 Appl. Math. Lett. 24 1986
[27] Liu Y, Lee S M, Kwon O M and Park J H 2014 Appl. Math. Comput. 226 589
[28] Qin B and Huang J 2014 Int. J. Math. Comput. Sci. Engg. 8 309
[29] Li H 2013 Appl. Math. Modelling 37 7223
[30] Gahinet P, Nemirovski A, Laub A and Chilali M 1995 LMI Control toolbox User's Guide (Natick: The Mathworks)
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[3] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[4] Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic
Chao Liu(刘超) and Pan Ying(应盼). Chin. Phys. B, 2022, 31(2): 026201.
[5] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[6] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[7] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[8] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[9] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[10] Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
Zijian Jiang(蒋子健), Jianwen Zhou(周健文), and Haiping Huang(黄海平). Chin. Phys. B, 2021, 30(4): 048702.
[11] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[12] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[13] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[14] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[15] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
No Suggested Reading articles found!