Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080201    DOI: 10.1088/1674-1056/26/8/080201
GENERAL   Next  

Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium

Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹)
School of Mathematics, South China University of Technology, Guangzhou 510641, China

This paper introduces a four-dimensional (4D) segmented disc dynamo which possesses coexisting hidden attractors with one stable equilibrium or a line equilibrium when parameters vary. In addition, by choosing an appropriate bifurcation parameter, the paper proves that Hopf bifurcation and pitchfork bifurcation occur in the system. The ultimate bound is also estimated. Some numerical investigations are also exploited to demonstrate and visualize the corresponding theoretical results.

Keywords:  coexisting hidden attractors      4D segmented disc dynamo      pitchfork bifurcation      Hopf bifurcation      ultimate bound estimation  
Received:  23 February 2017      Revised:  16 April 2017      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
  02.30.Oz (Bifurcation theory)  
  05.45.-a (Nonlinear dynamics and chaos)  

Project supported by the National Natural Science Foundation of China (Grant No. 11671149).

Corresponding Authors:  Jianghong Bao     E-mail:
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹) Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium 2017 Chin. Phys. B 26 080201

[1] Wang Z, Ding S, Shan Q and Zhang H 2016 IEEE Trans. Neural Netw. Learn. Syst.
[2] Ding S, Wang Z and Zhang H 2016 International Journal of Control
[3] Chang C Y, Zhao X, Yang F and Wu C E 2016 Chin. Phys. B 25 070504
[4] Lei Y M and Zhang H X 2017 Chin. Phys. B 26 030502
[5] Ojoniyi O S and Njah A N 2016 Chaos, Solitons and Fractals 87 172
[6] Wei Z, Wang R and Liu A 2014 Math. Comput. Simul. 100 13
[7] Wei Z and Zhang W 2014 Int. J. Bifur. Chaos 24 1450127
[8] Wang X and Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1264
[9] Molaie M, Jafari S and Sprott J C 2013 Int. J. Bifur. Chaos 23 1350188
[10] Jafari S and Sprott J C 2013 Chaos, Solitons and Fractals 57 79
[11] Liu Y and Yang Q 2010 Nonlinear Anal. RWA 11 2563
[12] Moffatt H K 1979 Geophys. Astrophys. Fluid Dyn. 14 147
[13] Sprott J C 2011 Int. J. Bifur. Chaos 21 2391
[14] Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (New York: Springer-Verlag)
[15] Wiggins S 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer-Verlag)
[16] Wang P, Li D, Wu X, Lv J and Yu X 2011 Int. J. Bifur. Chaos 21 2679
[17] Wang J, Zhang Q, Chen Z and Li H 2014 Nonlinear Dyn. 78 2517
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[3] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[4] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[5] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[6] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
[7] Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Wang Zhao-Long (王兆龙), Li Hai-Bin (李海滨). Chin. Phys. B, 2015, 24(1): 014501.
[8] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Sun Bao-Ping (孙宝平), Zhang Wen-Ming (张文明). Chin. Phys. B, 2014, 23(9): 094501.
[9] Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation
Zhu Zhi-Wen (竺致文), Zhang Qing-Xin (张庆昕), Xu Jia (许佳). Chin. Phys. B, 2014, 23(8): 088201.
[10] Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation
Jia Bing (贾冰). Chin. Phys. B, 2014, 23(5): 050510.
[11] Bifurcation diagram globally underpinning neuronal firing behaviors modified by SK conductance
Chen Meng-Jiao (陈梦娇), Ling Heng-Li (令恒莉), Liu Yi-Hui (刘一辉), Qu Shi-Xian (屈世显), Ren Wei (任维). Chin. Phys. B, 2014, 23(2): 028701.
[12] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya (张玮亚), Li Yong-Li (李永丽), Chang Xiao-Yong (常晓勇), Wang Nan (王楠). Chin. Phys. B, 2013, 22(9): 098401.
[13] Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system
Xue Wei (薛薇), Qi Guo-Yuan (齐国元), Mu Jing-Jing (沐晶晶), Jia Hong-Yan (贾红艳), Guo Yan-Ling (郭彦岭). Chin. Phys. B, 2013, 22(8): 080504.
[14] Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas
Zhang Yin (张因), Li Yin-Chang (李寅阊), Liu Rui (刘锐), Cui Fei-Fei (崔非非), Pierre Evesque, Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2013, 22(5): 054701.
[15] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
No Suggested Reading articles found!