Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014701    DOI: 10.1088/1674-1056/25/1/014701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid

F M Abbasi1, M Mustafa2, S A Shehzad3, M S Alhuthali4, T Hayat4,5
1. Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000, Pakistan;
2. School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad 44000, Pakistan;
3. Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000, Pakistan;
4. NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
5. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
Abstract  We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier's law of heat conduction.
Keywords:  Oldroyd-B fluid      Cattaneo-Christov heat flux      nonlinear analysis  
Received:  21 June 2015      Revised:  15 August 2015      Accepted manuscript online: 
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  02.30.Hq (Ordinary differential equations)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, Saudi Arabia (Grant No. 32-130-36-HiCi).
Corresponding Authors:  S A Shehzad     E-mail:  ali_qau70@yahoo.com

Cite this article: 

F M Abbasi, M Mustafa, S A Shehzad, M S Alhuthali, T Hayat Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid 2016 Chin. Phys. B 25 014701

[1] Sajid M, Abbas Z, Ali N and Javed T 2010 , Canad. J. Phys. 88 635
[2] Jamil M, Fetecau C and Imran M 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 1378
[3] Zheng L, Liu Y and Zhang X 2012 Nonlinear Analysis: Real World Appl. 13 513
[4] Li C, Zheng L, Zhang Y, Ma L and Zhang X 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 5026
[5] Kamran M, Imran M and Athar M 2013 Meccanica 48 1215
[6] Abbasbandy S, Hayat T, Alsaedi A and Rashidi M M 2014 Int. J. Numer. Methods Heat Fluid Flow 24 390
[7] Hayat T, Hussain T, Shehzad S A and Alsaedi A 2015 Appl. Math. Mech. Eng. Edit. 36 69
[8] Shivakumara I S and Sureshkumar S 2008 J. Geophys. Eng. 5 268
[9] Khan M and Zeeshan 2011 Chin. Phys. Lett. 28 084701
[10] Liu Y, Zheng L and Zhang X 2011 Comput. Math. Appl. 61 443
[11] Swamy M S and Sidram W 2013 Fluid Dyn. Res. 45 015504
[12] Niu J, Shi Z H and Tan W C 2013 J. Hydrodynamics Ser. B 25 639
[13] Shivakumara I S, Dhananjaya M and Ng C 2015 Int. J. Heat Mass Transfer 84 167
[14] Sajid M, Ahmed B and Abbas Z 2015 J. Egypt. Math. Soc. 23 440
[15] Fourier J B J 1822 Théorie Analytique ee la Chaleur, Paris
[16] Cattaneo C 1948 Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3 83
[17] Christov C I 2009 Mech. Res. Commun. 36 481
[18] Ostoja-Starzewski M 2009 Int. J. Eng. Sci. 47 807
[19] Tibullo V and Zampoli V 2011 Mech. Res. Commun. 38 77
[20] Straughan B 2010 Int. J. Heat Mass Transfer 53 95
[21] Haddad S A M 2014 Int. J. Heat Mass Transfer 68 659
[22] Ciarletta M and Straughan B 2010 Mech. Res. Commun. 37 445
[23] Al-Qahtani H and Yilbas B S 2010 Phys. B 405 3869
[24] Papanicolaou N C, Christov C I and Jordan P M 2011 Europ. J. Mec. B Fluids 30 68
[25] Han S, Zheng L, Li C and Zhang X 2014 Appl. Math. Lett. 38 87
[26] Mustafa M 2015 AIP Adv. 5 047109
[27] Bissell J J 2015 Proceedings A
[28] Liao S J 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 2003
[29] Mustafa M, Farooq M A, Hayat T and Alsaedi A 2013 Plos One 8 61859
[30] Abbasbandy S and Jalili M 2013 Numer. Algor. 64 593
[31] Rashidi M M, Freidoonimehr N, Hosseini A, Bég O A and Hung T K 2014 Meccanica 49 469
[32] Mustafa M, Khan J A, Hayat T and Alsaedi A 2015 IEEE Trans. Nanotech. 14 159
[33] Mustafa M, Khan J A, Hayat T and Alsaedi A 2015 Int. J. Non-linear Mech. 71 22
[34] Zheng L, Wang L and Zhang X 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 731
[35] Zheng L, Niu J, Zhang X and Gao Y 2012 Math. Comput. Modelling 56 133
[36] Yu R S, Cong B L, Guang H W and Zhi G Z 2012 Chin. Phys. B 21 120307
[37] Hayat T, Asad S, Mustafa M and Alsulami H H 2014 Chin. Phys. B 23 084701
[38] Hayat T, Asad S and Alsaedi A 2015 Chin. Phys. B 24 044702
[39] Abel M S, Tawade J and Nandeppanavar M M 2012 Meccanica 47 385
[40] Megahed M A 2013 Chin. Phys. B 22 094701
[41] Sadeghy K, Hajibeygi H and Taghavi S M 2006 Int. J. Non-linear Mech. 41 1242
[42] Mukhopadhyay S 2012 Chin. Phys. Lett. 29 054703
[1] Dynamical analysis and circuit simulation of a new three-dimensional chaotic system
Wang Ai-Yuan (王爱元), Ling Zhi-Hao (凌志浩). Chin. Phys. B, 2010, 19(7): 070506.
[2] Self-consistent nonlinear analysis of a frequency-quadrupling terahertz gyroklystron
Liu Di-Wei(刘頔威),Yuan Xue-Song(袁学松), Yan Yang(鄢扬), and Liu Sheng-Gang(刘盛纲) . Chin. Phys. B, 2009, 18(12): 5507-5510.
No Suggested Reading articles found!