Please wait a minute...
Chinese Physics, 2003, Vol. 12(6): 632-638    DOI: 10.1088/1009-1963/12/6/311
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analytic Debye-Grüneisen equation of state for a generalized Lennard-Jones solids

Sun Jiu-Xun (孙久勋)a, Wu Qiang (吴强)b, Cai Ling-Cang (蔡灵仓)b, Jing Fu-Qian (经福谦)b
a Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, China; b Laboratory for Shock Wave and Detonation Physics Research, Southwest Institute of Fluid Physics, Mianyang 621900, China
Abstract  The approximate method to treat the practical quantum anharmonic solids proposed by Hardy, Lacks and Shukla is reformulated with explicit physical meanings. It is shown that the quantum effect is important at low temperature, it can be treated in the harmonic framework; and the anharmonic effect is important at high temperature and tends to zero at low temperature, it can be treated by using a classical approximation. The alternative formulation is easier for various applications, and is applied to a Debye-Grüneisen solid with the generalized Lennard-Jones intermolecular interaction. The expressions for the Debye temperature and Grüneisen parameter as a function of volume are analytically derived. The analytic equation of state is applied to predict the thermodynamic properties of solid xenon at normal-pressure with the nearest-neighbour Lennard-Jones interaction, and is further applied to research the properties of solid xenon and krypton at high pressure by using an all-neighbour Lennard-Jones interaction. The theoretical results are in agreement with the experiments.
Keywords:  equation of state      analyticity      generalized Lennard-Jones solid      thermodynamic properties  
Received:  24 December 2002      Revised:  10 February 2003      Accepted manuscript online: 
PACS:  64.30.-t (Equations of state of specific substances)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 19904002), by the Science Foundation of China Academy of Engineering Physics (Grant No 99010102), and by the Youth Science and Technology Foundation of UESTC (Grant No YF02070

Cite this article: 

Sun Jiu-Xun (孙久勋), Wu Qiang (吴强), Cai Ling-Cang (蔡灵仓), Jing Fu-Qian (经福谦) Analytic Debye-Grüneisen equation of state for a generalized Lennard-Jones solids 2003 Chinese Physics 12 632

[1] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[2] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[3] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[4] Equation of state of LiCoO2 under 30 GPa pressure
Yong-Qing Hu(户永清), Lun Xiong(熊伦), Xing-Quan Liu(刘兴泉), Hong-Yuan Zhao(赵红远), Guang-Tao Liu(刘广涛), Li-Gang Bai(白利刚), Wei-Ran Cui(崔巍然), Yu Gong(宫宇), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(1): 016402.
[5] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[6] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
[7] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[8] High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善). Chin. Phys. B, 2018, 27(1): 017402.
[9] Pressure-induced phase transition of B-type Y2O3
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善). Chin. Phys. B, 2017, 26(9): 090703.
[10] Elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2 and Ca10(PO4)6F2 from first principles
Xianggang Kong(孔祥刚), Zhihong Yuan(袁志红), You Yu(虞游), Tao Gao(高涛), Shenggui Ma(马生贵). Chin. Phys. B, 2017, 26(8): 086301.
[11] Equation of state for warm dense lithium: A first principles investigation
Feiyun Long(龙飞沄), Haitao Liu(刘海涛), Dafang Li(李大芳), Jun Yan(颜君). Chin. Phys. B, 2017, 26(6): 065101.
[12] High-pressure dynamic, thermodynamic properties, and hardness of CdP2
Shi-Quan Feng(冯世全), Ling-Li Wang(王伶俐), Xiao-Xu Jiang(姜晓旭), Hai-Nin Li(李海宁), Xin-Lu Cheng(程新路), Lei Su(苏磊). Chin. Phys. B, 2017, 26(4): 046301.
[13] Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations
M A Ali, M R Khatun, N Jahan, M M Hossain. Chin. Phys. B, 2017, 26(3): 033102.
[14] First-principles calculations of structural and thermodynamic properties of β-PbO
Vahedeh Razzazi, Sholeh Alaei. Chin. Phys. B, 2017, 26(11): 116501.
[15] Measurement of transient Raman spectrum on gas-gun loading platform and its application in liquid silane
Yi-Gao Wang(汪贻高), Fu-Sheng Liu(刘福生), Qi-Jun Liu(刘其军), Wen-Peng Wang(王文鹏), Ming-Jian Zhang(张明建), Feng Xi(习锋), Ling-Cang Cai(蔡灵仓), Ning-Chao Zhang(张宁超). Chin. Phys. B, 2017, 26(10): 103301.
No Suggested Reading articles found!