Please wait a minute...
Chinese Physics, 2003, Vol. 12(4): 443-451    DOI: 10.1088/1009-1963/12/4/318

Kinetic behaviour of two-species-group aggregation process with complete annihilation

Ke Jian-Hong (柯见洪), Lin Zhen-Quan (林振权), Wang Xiang-Hong (王向红)
Department of Physics and Electronic Information Science, Wenzhou Normal College, Wenzhou 325027, China
Abstract  We propose a two-species-group aggregation-annihilation model in which an irreversible aggregation reaction occurs between any two clusters of the same species, and an irreversible joint annihilation reaction occurs between two distinct species groups. Based on the mean-field theory, we have investigated the rate equations of the process with constant reaction rates to obtain the asymptotic descriptions of the cluster-mass distributions. The results indicate that for the symmetrical initial cases the kinetic behaviour of the system depends crucially on the ratio of the equivalent aggregation rate to the annihilation rate. The cluster-mass distribution of each species always obeys a conventional or modified scaling law in each individual case. Moreover, all the species cannot finally survive except for the cases in which at least one equivalent aggregation rate is less than twice the annihilation rate.
Keywords:  kinetic behaviour      aggregation-annihilation      scaling law  
Received:  18 September 2002      Revised:  24 December 2002      Accepted manuscript online: 
PACS:  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
  82.60.-s (Chemical thermodynamics)  
  82.70.-y (Disperse systems; complex fluids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10175008 and 10275048) and by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos 102067 and 101002).

Cite this article: 

Ke Jian-Hong (柯见洪), Lin Zhen-Quan (林振权), Wang Xiang-Hong (王向红) Kinetic behaviour of two-species-group aggregation process with complete annihilation 2003 Chinese Physics 12 443

[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[3] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[4] Equivalent electron correlations in nonsequential double ionization of noble atoms
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛). Chin. Phys. B, 2017, 26(2): 023202.
[5] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[6] Scaling law of single ion-atom impact ionization cross sections of noble gases from He to Xe at strong perturbative energies
Ren Ping-Yuan (任屏源), Zou Xian-Rong (邹贤容), Shao Jian-Xiong (邵剑雄), Wang Shi-Yao (王诗尧), Zhou Man (周满), Zhou Wang (周旺), Yang Ai-Xiang (杨爱香), Yan Peng-Xun (闫鹏勋), Chen Xi-Meng (陈熙萌). Chin. Phys. B, 2015, 24(6): 063402.
[7] A fractal approach to low velocity non-Darcy flow in a low permeability porous medium
Cai Jian-Chao (蔡建超). Chin. Phys. B, 2014, 23(4): 044701.
[8] Calculation of the photoelectron spectra under the scaling transform
Ye Hui-Liang (叶会亮), Wu Yan (吴艳), Zhang Jing-Tao (张敬涛), Shao Chu-Yin (邵初寅). Chin. Phys. B, 2013, 22(1): 013207.
[9] Fluctuations in airport arrival and departure traffic: A network analysis
Li Shan-Mei (李善梅), Xu Xiao-Hao (徐肖豪), Meng Ling-Hang (孟令航 ). Chin. Phys. B, 2012, 21(8): 088901.
[10] Kinetic evolutionary behavior of catalysis-select migration
Wu Yuan-Gang(吴远刚), Lin Zhen-Quan(林振权), and Ke Jian-Hong(柯见洪) . Chin. Phys. B, 2012, 21(6): 068201.
[11] A scaling law of high-order harmonic generation
Wu Yan(吴艳), Ye Hui-Liang(叶会亮), Shao Chu-Yin(邵初寅), and Zhang Jing-Tao(张敬涛) . Chin. Phys. B, 2012, 21(2): 024210.
[12] Dynamic models of pest propagation and pest control
Yin Ming(尹铭), Lin Zhen-Quan(林振权), and Ke Jian-Hong(柯见洪). Chin. Phys. B, 2011, 20(8): 088201.
[13] Analytical results for the cluster size distribution in controlled deposition processes
Ke Jian-Hong(柯见洪), Chen Xiao-Shuang(陈效双), and Lin Zhen-Quan(林振权). Chin. Phys. B, 2010, 19(2): 026802.
[14] Aggregation processes with catalysis-driven monomer birth/death
Chen Yu(陈玉), Han An-Jia(韩安家), Ke Jian-Hong(柯见洪), and Lin Zhen-Quan(林振权). Chin. Phys. B, 2006, 15(8): 1896-1902.
[15] Aggregate growth driven by monomer transfer
Ke Jian-Hong (柯见洪), Zhuang You-Yi (庄友谊), Lin Zhen-Quan (林振权). Chin. Phys. B, 2005, 14(8): 1676-1682.
No Suggested Reading articles found!