Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 088201    DOI: 10.1088/1674-1056/20/8/088201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamic models of pest propagation and pest control

Yin Ming(尹铭), Lin Zhen-Quan(林振权), and Ke Jian-Hong(柯见洪)
Department of Physics, Wenzhou University, Wenzhou 325035, China
Abstract  This paper proposes a pest propagation model to investigate the evolution behaviours of pest aggregates. A pest aggregate grows by self-monomer birth, and it may fragment into two smaller ones. The kinetic evolution behaviours of pest aggregates are investigated by the rate equation approach based on the mean-field theory. For a system with a self-birth rate kernel $I(k)=Ik$ and a fragmentation rate kernel $L(i,j)=L$, we find that the  total number $M^A_0(t)$ and the total mass of the pest aggregates $M^A_1(t)$ both increase exponentially with time if $L\neq0$. Furthermore, we introduce two catalysis-driven monomer death mechanisms for the former pest propagation model to study the evolution behaviours of pest aggregates under pesticide and natural enemy controlled pest propagation. In the pesticide controlled model with a catalyzed monomer death rate kernel $J_1(k)=J_1k$,  it is found that only when $I<J_1B_0$ ($B_0$ is the concentration of catalyst aggregates) can the pests be killed off. Otherwise, the pest aggregates can survive. In the model of pest control with a natural enemy, a pest aggregate loses one of its individuals and the number of natural enemies increases by one. For this system, we find that no matter how many natural enemies there are at the beginning, pests will be eliminated by them  eventually.
Keywords:  kinetic evolution behaviour      pest propagation      pest control      scaling law  
Received:  19 December 2010      Revised:  16 March 2011      Accepted manuscript online: 
PACS:  82.20.-w (Chemical kinetics and dynamics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  89.75.Da (Systems obeying scaling laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875086 and 10775104).

Cite this article: 

Yin Ming(尹铭), Lin Zhen-Quan(林振权), and Ke Jian-Hong(柯见洪) Dynamic models of pest propagation and pest control 2011 Chin. Phys. B 20 088201

[1] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1
[2] Friedlander S K 1977 Smoke, Dust and Haze: Fundamental of Aerosol Behaviour (New York: Wiley)
[3] Drake R L 1972 Topics of Current Aerosol Research ed. Hidy G M and Brook J R (New York: Pergamon) p. 201
[4] Pruppacher H and Klett J 1998 Microphysics of Cloudsand Precipitations (Dordrecht: Kluwer)
[5] Flory P J 1941 J. Am. Chem. Soc. 63 3083
[6] Stockmayer W H 1943 J. Chem. Phys. 11 45
[7] Scott W T 1968 J. Atmos. Sci. 25 54
[8] Ziff R M 1980 J. Stat. Phys. 23 241
[9] Ben-Naim E and Krapivsky P L 2004 Phys. Rev. E 69 050901 (R)
[10] Kessler D A and Shnerb N M 2007 Phys. Rev. E 76 010901 (R)
[11] Wang H, Lin Z, Gao Y and Xu C 2009 Chin. Phys. B 18 3577
[12] Schelling T 1971 J. Math. Soc. 1 16
[13] Krapivsky P L, Rodgers G J and Redner S 2001 Phys. Rev. Lett. 86 5401
[14] Krapivsky P L and Redner S 2001 Phys. Rev. E 63 066123
[15] Albert R and Barabasi B A 2002 Rev. Mod. Phys. 74 47
[16] Dorogovtsev S N and Mendes J F F 2002 Adv. Phys. 51 1079
[17] Kang K and Redner S 1984 Phys. Rev. A 30 2833
[18] Racz Z 1985 Phys. Rev. A 32 1129
[19] Vicsek T and Family F 1984 Phys. Rev. Lett. 52 1669
[20] Vicsek T, Meakin P and Family F 1985 Phys. Rev. A 32 1122
[21] Family F, Meakin P and Deutch J M 1986 Phys. Rev. Lett. 57 727
[22] Family F and Meakin P 1989 Phys. Rev. A 40 3836
[23] Song S and Poland D 1992 Phys. Rev. A 46 5063
[24] Krapivsky P L 1993 Physica A 198 135
[25] Ben-Naim E and Krapivsky P L 1995 Phys. Rev. E 52 6066
[26] Ke J and Lin Z 2002 Phys. Rev. E 65 051107
[27] Ke J, Lin J and Lin Z 2003 Chin. Phys. Lett. 20 1390
[28] Ke J, Chen X and Lin Z 2010 Chin. Phys. B 19 026802
[29] Li J , Lin B and Huang Y 2008 Chin. Phys. B 17 473
[30] Stanley M H R, Amaral L A N, Buldyrev S V, Havlin S, Leschhorn H, Maass P, Salinger M A and Stanley H E 1996 Nature 379 804
[31] Stanley H E, Amaral L A N, Canning D, Gopikrishnan P, Lee Y and Liu Y 1999 Physica A 269 156
[32] Fu D, Pammolli F, Buldyrev S V, Riccaboni M, Matia K, Yamasaki K and Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 18801
[33] Plerou V, Amaral L A N, Gopikrishnan P, Meyer M and Stanley H E 1996 Nature 400 433
[34] Pammolli F, Fu D, Buldyrev S V, Riccaboni1 M, Matia K, Yamasaki K and Stanley H E 2007 Eur. Phys. J. B 57 127
[35] Buldyrev S V, Pammolli F, Riccaboni M, Yamasaki K, Fu D, Matia K and Stanley H E 2007 Eur. Phys. J. B 57 131
[36] Ispolatov S, Krapivsky P L and Redner S 1998 Eur. Phys. J. B 2 267
[37] Leyvraz F and Redner S 2002 Phys. Rev. Lett. 88 068301
[38] Lin Z and Ke J 2003 Phys. Rev. E 67 031103
[39] Lin Z, Ke J and Ye G 2005 Commun. Theor. Phys. 43 837
[40] Lin Z, Ke J and Ye G 2006 Phys. Rev. E 74 046113
[41] Wang H, Lin Z and Ke J 2007 Phys. Rev. E 75 046108
[42] Ke J, Lin Z, Zheng Y, Chen X and Lu W 2006 Phys. Rev. Lett. 97 028301
[43] Ben-Naim E and Redner S 2005 J. Stat. Mech. L11002
[44] Ben-Naim E, Vazquez F and Redner S 2006 Eur. Phys. J. B 49 531
[45] Yang S, Zhu S, Ke J and Lin Z 2008 Commun. Theor. Phys. 50 787
[46] Chen D, Sun Y, Lin Z and Ke J 2009 Commun. Theor. Phys. 52 1139
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[3] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[4] Equivalent electron correlations in nonsequential double ionization of noble atoms
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛). Chin. Phys. B, 2017, 26(2): 023202.
[5] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[6] Scaling law of single ion-atom impact ionization cross sections of noble gases from He to Xe at strong perturbative energies
Ren Ping-Yuan (任屏源), Zou Xian-Rong (邹贤容), Shao Jian-Xiong (邵剑雄), Wang Shi-Yao (王诗尧), Zhou Man (周满), Zhou Wang (周旺), Yang Ai-Xiang (杨爱香), Yan Peng-Xun (闫鹏勋), Chen Xi-Meng (陈熙萌). Chin. Phys. B, 2015, 24(6): 063402.
[7] A fractal approach to low velocity non-Darcy flow in a low permeability porous medium
Cai Jian-Chao (蔡建超). Chin. Phys. B, 2014, 23(4): 044701.
[8] Calculation of the photoelectron spectra under the scaling transform
Ye Hui-Liang (叶会亮), Wu Yan (吴艳), Zhang Jing-Tao (张敬涛), Shao Chu-Yin (邵初寅). Chin. Phys. B, 2013, 22(1): 013207.
[9] Fluctuations in airport arrival and departure traffic: A network analysis
Li Shan-Mei (李善梅), Xu Xiao-Hao (徐肖豪), Meng Ling-Hang (孟令航 ). Chin. Phys. B, 2012, 21(8): 088901.
[10] Kinetic evolutionary behavior of catalysis-select migration
Wu Yuan-Gang(吴远刚), Lin Zhen-Quan(林振权), and Ke Jian-Hong(柯见洪) . Chin. Phys. B, 2012, 21(6): 068201.
[11] A scaling law of high-order harmonic generation
Wu Yan(吴艳), Ye Hui-Liang(叶会亮), Shao Chu-Yin(邵初寅), and Zhang Jing-Tao(张敬涛) . Chin. Phys. B, 2012, 21(2): 024210.
[12] Aggregation processes with catalysis-driven monomer birth/death
Chen Yu(陈玉), Han An-Jia(韩安家), Ke Jian-Hong(柯见洪), and Lin Zhen-Quan(林振权). Chin. Phys. B, 2006, 15(8): 1896-1902.
[13] Aggregate growth driven by monomer transfer
Ke Jian-Hong (柯见洪), Zhuang You-Yi (庄友谊), Lin Zhen-Quan (林振权). Chin. Phys. B, 2005, 14(8): 1676-1682.
[14] Relativistic calculation of dielectronic recombination for He-like krypton
Shi Xi-Heng (史习珩), Wang Yan-Sen (王炎森), Chen Chong-Yang (陈重阳), Gu Ming-Feng (顾明峰). Chin. Phys. B, 2005, 14(5): 959-963.
[15] Competition between aggregation and migration processes of a multi-species system
Ke Jian-Hong (柯见洪), Zhuang You-Yi (庄友谊), Lin Zhen-Quan (林振权), Ye Peng (叶鹏). Chin. Phys. B, 2005, 14(12): 2602-2608.
No Suggested Reading articles found!