Please wait a minute...
Chinese Physics, 2001, Vol. 10(6): 494-496    DOI: 10.1088/1009-1963/10/6/306
GENERAL Prev   Next  

ADAPTIVE CONTROL AND IDENTIFICATION OF CHAOTIC SYSTEMS

Li Zhi (李智), Han Chong-zhao (韩崇昭)
School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  A novel adaptive control and identification on-line method is proposed for a class of chaotic system with uncertain parameters. We prove that, using the presented method, a controller and identifier is developed which can remove chaos in nonlinear systems and make the system asymptotically stabilizing to an arbitrarily desired smooth orbit. And at the same time, estimates to uncertain parameters converge to their true values. The advantage of our method over the existing result is that the controller and identifier is directly constructed by analytic formula without knowing unknown bounds about uncertain parameters in advance. A computer simulation example is given to validate the proposed approach.
Keywords:  chaotic systems      adaptive chaos control      identification on line      uncertain parameters  
Received:  23 December 2000      Revised:  12 January 2001      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  

Cite this article: 

Li Zhi (李智), Han Chong-zhao (韩崇昭) ADAPTIVE CONTROL AND IDENTIFICATION OF CHAOTIC SYSTEMS 2001 Chinese Physics 10 494

[1] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[2] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[3] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[4] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[5] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[6] Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
Wang Rui (王蕊), Sun Hui (孙辉), Wang Jie-Zhi (王杰智), Wang Lu (王鲁), Wang Yan-Chao (王晏超). Chin. Phys. B, 2015, 24(2): 020501.
[7] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[8] Robust output feedback cruise control for high-speed train movement with uncertain parameters
Li Shu-Kai (李树凯), Yang Li-Xing (杨立兴), Li Ke-Ping (李克平). Chin. Phys. B, 2015, 24(1): 010503.
[9] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[10] Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof
Song Rui-Zhuo (宋睿卓), Xiao Wen-Dong (肖文栋), Sun Chang-Yin (孙长银), Wei Qing-Lai (魏庆来). Chin. Phys. B, 2013, 22(9): 090502.
[11] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[12] Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters
Liu Ping (刘平). Chin. Phys. B, 2013, 22(7): 070501.
[13] A novel study for impulsive synchronization of fractional-order chaotic systems
Liu Jin-Gui (刘金桂). Chin. Phys. B, 2013, 22(6): 060510.
[14] Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos
Zhang Fang-Fang (张芳芳), Liu Shu-Tang (刘树堂), Yu Wei-Yong (余卫勇). Chin. Phys. B, 2013, 22(12): 120505.
[15] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
No Suggested Reading articles found!