Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100502    DOI: 10.1088/1674-1056/24/10/100502
GENERAL Prev   Next  

A novel adaptive-impulsive synchronization of fractional-order chaotic systems

Leung Y. T. Andrewa, Li Xian-Fenga, Chu Yan-Dongb, Zhang Huic
a Department of Architecture and Civil Engineering, City University of Hong Kong, China;
b School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China;
c School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Abstract  A novel adaptive-impulsive scheme is proposed for synchronizing fractional-order chaotic systems without the necessity of knowing the attractors' bounds in priori. The nonlinear functions in these systems are supposed to satisfy local Lipschitz conditions but which are estimated with adaptive laws. The novelty is that the combination of adaptive control and impulsive control offers a control strategy gathering the advantages of both. In order to guarantee the convergence is no less than an expected exponential rate, a combined feedback strength design is created such that the symmetric axis can shift freely according to the updated transient feedback strength. All of the unknown Lipschitz constants are also updated exponentially in the meantime of achieving synchronization. Two different fractional-order chaotic systems are employed to demonstrate the effectiveness of the novel adaptive-impulsive control scheme.
Keywords:  adaptive-impulsive synchronization      fractional order      chaotic systems      combined feedback strength  
Received:  02 March 2015      Revised:  18 May 2015      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 11161027 and 11262009), the Key Natural Science Foundation of Gansu Province, China (Grant No. 1104WCGA195), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136204110001).
Corresponding Authors:  Leung Y. T. Andrew     E-mail:  aytleung@gmail.com

Cite this article: 

Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui A novel adaptive-impulsive synchronization of fractional-order chaotic systems 2015 Chin. Phys. B 24 100502

[1] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[2] Moaddy K, Radwan A G, Salama K N, Momani S and Hashima I 2012 Comput. Math. Appl. 64 3329
[3] Yang N N, Liu C X and Wu C J 2012 Chin. Phys. B 21 080503
[4] Abouelregal A E and Zenkour A M 2013 Chin. Phys. B 22 108102
[5] Hilfer R 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific Publishing)
[6] Ingman D and Suzdalnitsky J 2002 J. Vib. Acoust. 124 642
[7] Das S and Pan I 2011 Fractional Order Signal Processing: Introductory Concepts and Applications (Berlin: Springer)
[8] Monje C A, Chen Y Q, Vinagre B M, Xue D Y and Feliu-Batlle V 2010 Fractional-order Systems and Controls: Fundamentals and Applications (London: Springer)
[9] Li T Z, Wang Y and Luo M K 2014 Chin. Phys. B 23 080501
[10] Tavazoei M S and Haeri M 2008 Physica D 237 2628
[11] Zhang H, Chen D Y, Zhou K and Wang Y C 2015 Chin. Phys. B 24 030203
[12] Zhou K, Wang Z H, Gao L K, Sun Y and Ma T D 2015 Chin. Phys. B 24 030504
[13] Cafagna D and Grassi G 2009 Int. J. Bifur. Chaos 19 339
[14] Sprott J C and Wajdi M 2003 Chaos, Solitons and Fractals 16 339
[15] Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502
[16] Wu X J, Wang H and Lu H T 2013 Nonlinear Anal. 13 1441
[17] N'Doye I, Voos H and Darouach M 2013 IEEE J. Emerg. Sel. Topic Circuits Syst. 3 442
[18] Muthukumar P and Balasubramaniam P 2013 Nonlinear Dyn. 74 1169
[19] Xu Y, Wang H, Li Y G and Pei B 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3735
[20] Muthukumar P, Balasubramaniam P and Ratnavelu K 2014 Chaos 24 033105
[21] Zhou P, Cheng Y M and Kuang F 2010 Chin. Phys. B 19 090503
[22] Aghababa M P 2012 J. Comput. Nonlinear Dyn. 7 021010
[23] Radwan A G, Moaddy K, Salama K N, Momani S and Hashim I 2014 J. Adv. Res. 5 125
[24] He G T and Luo M K 2012 Appl. Math. Mech. 33 567
[25] Zhou K, Wang Z H, Gao L K, Sun Y and Ma T D 2015 Chin. Phys. B 24 030504
[26] Wang D F, Zhang J Y and Wang X Y 2013 Chin. Phys. B 22 040507
[27] Chen D Y, Zhang R F, Ma X Y and Wang J 2012 Chin. Phys. B 21 120507
[28] Zhang R X and Yang S P 2012 Chin. Phys. B 21 030505
[29] Wu C J, Zhang Y B and Yang N N 2011 Chin. Phys. Lett. 20 060505
[30] Zhong Q S, Bao J F, Yu Y B and Liao X F 2008 Chin. Phys. Lett. 25 2812
[31] Ma T D, Jiang W B, Fu J and Xue F Z 2012 Acta Phys. Sin. 61 100507 (in Chinese)
[32] Fu J, Yu M and Ma T D 2011 Chin. Phys. B 20 120508
[33] Xi H L, Yu S M, Zhang R X and Xu L 2014 Optik 125 2036
[34] Wang X Y, Zhang Y L, Lin D and Zhang N 2011 Chin. Phys. B 20 030506
[35] Yang T and Chua L O 1997 Int. J. Bifur. Chaos 7 645
[36] Chen Y S and Chang C 2009 Chaos, Solitons and Fractals 40 1221
[37] Haeri M and Dehghani M 2006 Phys. Lett. A 356 226
[38] Zheng S and Zheng L 2013 Phys. Scr. 88 035004
[39] Cai L F and Zhou J 2012 Nonlinear Dyn. 70 541
[40] Ma M H, Zhang H, Cai J P and Zhou J 2013 Kybernetika 49 539
[41] Yang T 2001 Impulsive Control Theory (New York: Springer)
[42] Yang S J and Li C D 2014 Int. J. Bifur. Chaos 24 1450162.
[43] Chen Y S, Hwang R R and Chang C C 2010 Phys. Lett. A 374 2254
[44] Liu D F, Wu Z Y and Ye Q L 2014 Nonlinear Dyn. 75 209
[45] Zheng S 2013 Nonlinear Dyn. 74 957
[46] Gao X, Cheng M and Hu H 2014 Complexity, DOI: 10.1002cplx.21628
[47] Wan X J and Sun J T 2011 Math. Comput. Simul. 81 1609
[48] Li K and Lai C H 2008 Phys. Lett. A 372 1601
[49] Mahdavi N, Menhaj M B, Kurths J and Ju J Q 2013 IEEE Trans. Cyber. 43 648
[50] Diethelm K and Ford N J 2002 J. Math. Anal. Appl. 265 229
[51] Odibat Z and Momani S 2006 Int. J. Nonlinear Sci. Numer. Simul. 7 27
[52] Zhao L J and Deng W H 2014 Adv. Comput. Math. 40 137
[53] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[54] Momani S and Odibat Z J 2007 Comput. Appl. Math. 207 96
[55] Leung A Y T, Li X F, Chu Y D and Rao X B 2015 Appl. Math. Comput. 253 172
[56] Matouk A E 2009 Phys. Lett. A 373 2166
[57] Matouk A E and Elsadany A A 2014 Appl. Math. Lett. 29 30
[58] Chen Z Q, Yang Y, Qi G Y and Yuan Z Z 2007 Phys. Lett. A 360 696
[1] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[2] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[3] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[4] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[5] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[6] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[7] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[8] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[9] Using wavelet multi-resolution nature to accelerate the identification of fractional order system
Yuan-Lu Li(李远禄), Xiao Meng(孟霄), Ya-Qing Ding(丁亚庆). Chin. Phys. B, 2017, 26(5): 050201.
[10] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[11] Controllability of fractional-order Chua's circuit
Zhang Hao (张浩), Chen Di-Yi (陈帝伊), Zhou Kun (周坤), Wang Yi-Chen (王一琛). Chin. Phys. B, 2015, 24(3): 030203.
[12] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[13] Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
Wang Rui (王蕊), Sun Hui (孙辉), Wang Jie-Zhi (王杰智), Wang Lu (王鲁), Wang Yan-Chao (王晏超). Chin. Phys. B, 2015, 24(2): 020501.
[14] Function projective lag synchronization of fractional-order chaotic systems
Wang Sha (王莎), Yu Yong-Guang (于永光), Wang Hu (王虎), Ahmed Rahmani. Chin. Phys. B, 2014, 23(4): 040502.
[15] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
No Suggested Reading articles found!