|
|
A novel adaptive-impulsive synchronization of fractional-order chaotic systems |
Leung Y. T. Andrewa, Li Xian-Fenga, Chu Yan-Dongb, Zhang Huic |
a Department of Architecture and Civil Engineering, City University of Hong Kong, China; b School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China; c School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
Abstract A novel adaptive-impulsive scheme is proposed for synchronizing fractional-order chaotic systems without the necessity of knowing the attractors' bounds in priori. The nonlinear functions in these systems are supposed to satisfy local Lipschitz conditions but which are estimated with adaptive laws. The novelty is that the combination of adaptive control and impulsive control offers a control strategy gathering the advantages of both. In order to guarantee the convergence is no less than an expected exponential rate, a combined feedback strength design is created such that the symmetric axis can shift freely according to the updated transient feedback strength. All of the unknown Lipschitz constants are also updated exponentially in the meantime of achieving synchronization. Two different fractional-order chaotic systems are employed to demonstrate the effectiveness of the novel adaptive-impulsive control scheme.
|
Received: 02 March 2015
Revised: 18 May 2015
Accepted manuscript online:
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 11161027 and 11262009), the Key Natural Science Foundation of Gansu Province, China (Grant No. 1104WCGA195), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136204110001). |
Corresponding Authors:
Leung Y. T. Andrew
E-mail: aytleung@gmail.com
|
Cite this article:
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui A novel adaptive-impulsive synchronization of fractional-order chaotic systems 2015 Chin. Phys. B 24 100502
|
[1] |
Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
|
[2] |
Moaddy K, Radwan A G, Salama K N, Momani S and Hashima I 2012 Comput. Math. Appl. 64 3329
|
[3] |
Yang N N, Liu C X and Wu C J 2012 Chin. Phys. B 21 080503
|
[4] |
Abouelregal A E and Zenkour A M 2013 Chin. Phys. B 22 108102
|
[5] |
Hilfer R 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific Publishing)
|
[6] |
Ingman D and Suzdalnitsky J 2002 J. Vib. Acoust. 124 642
|
[7] |
Das S and Pan I 2011 Fractional Order Signal Processing: Introductory Concepts and Applications (Berlin: Springer)
|
[8] |
Monje C A, Chen Y Q, Vinagre B M, Xue D Y and Feliu-Batlle V 2010 Fractional-order Systems and Controls: Fundamentals and Applications (London: Springer)
|
[9] |
Li T Z, Wang Y and Luo M K 2014 Chin. Phys. B 23 080501
|
[10] |
Tavazoei M S and Haeri M 2008 Physica D 237 2628
|
[11] |
Zhang H, Chen D Y, Zhou K and Wang Y C 2015 Chin. Phys. B 24 030203
|
[12] |
Zhou K, Wang Z H, Gao L K, Sun Y and Ma T D 2015 Chin. Phys. B 24 030504
|
[13] |
Cafagna D and Grassi G 2009 Int. J. Bifur. Chaos 19 339
|
[14] |
Sprott J C and Wajdi M 2003 Chaos, Solitons and Fractals 16 339
|
[15] |
Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502
|
[16] |
Wu X J, Wang H and Lu H T 2013 Nonlinear Anal. 13 1441
|
[17] |
N'Doye I, Voos H and Darouach M 2013 IEEE J. Emerg. Sel. Topic Circuits Syst. 3 442
|
[18] |
Muthukumar P and Balasubramaniam P 2013 Nonlinear Dyn. 74 1169
|
[19] |
Xu Y, Wang H, Li Y G and Pei B 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3735
|
[20] |
Muthukumar P, Balasubramaniam P and Ratnavelu K 2014 Chaos 24 033105
|
[21] |
Zhou P, Cheng Y M and Kuang F 2010 Chin. Phys. B 19 090503
|
[22] |
Aghababa M P 2012 J. Comput. Nonlinear Dyn. 7 021010
|
[23] |
Radwan A G, Moaddy K, Salama K N, Momani S and Hashim I 2014 J. Adv. Res. 5 125
|
[24] |
He G T and Luo M K 2012 Appl. Math. Mech. 33 567
|
[25] |
Zhou K, Wang Z H, Gao L K, Sun Y and Ma T D 2015 Chin. Phys. B 24 030504
|
[26] |
Wang D F, Zhang J Y and Wang X Y 2013 Chin. Phys. B 22 040507
|
[27] |
Chen D Y, Zhang R F, Ma X Y and Wang J 2012 Chin. Phys. B 21 120507
|
[28] |
Zhang R X and Yang S P 2012 Chin. Phys. B 21 030505
|
[29] |
Wu C J, Zhang Y B and Yang N N 2011 Chin. Phys. Lett. 20 060505
|
[30] |
Zhong Q S, Bao J F, Yu Y B and Liao X F 2008 Chin. Phys. Lett. 25 2812
|
[31] |
Ma T D, Jiang W B, Fu J and Xue F Z 2012 Acta Phys. Sin. 61 100507 (in Chinese)
|
[32] |
Fu J, Yu M and Ma T D 2011 Chin. Phys. B 20 120508
|
[33] |
Xi H L, Yu S M, Zhang R X and Xu L 2014 Optik 125 2036
|
[34] |
Wang X Y, Zhang Y L, Lin D and Zhang N 2011 Chin. Phys. B 20 030506
|
[35] |
Yang T and Chua L O 1997 Int. J. Bifur. Chaos 7 645
|
[36] |
Chen Y S and Chang C 2009 Chaos, Solitons and Fractals 40 1221
|
[37] |
Haeri M and Dehghani M 2006 Phys. Lett. A 356 226
|
[38] |
Zheng S and Zheng L 2013 Phys. Scr. 88 035004
|
[39] |
Cai L F and Zhou J 2012 Nonlinear Dyn. 70 541
|
[40] |
Ma M H, Zhang H, Cai J P and Zhou J 2013 Kybernetika 49 539
|
[41] |
Yang T 2001 Impulsive Control Theory (New York: Springer)
|
[42] |
Yang S J and Li C D 2014 Int. J. Bifur. Chaos 24 1450162.
|
[43] |
Chen Y S, Hwang R R and Chang C C 2010 Phys. Lett. A 374 2254
|
[44] |
Liu D F, Wu Z Y and Ye Q L 2014 Nonlinear Dyn. 75 209
|
[45] |
Zheng S 2013 Nonlinear Dyn. 74 957
|
[46] |
Gao X, Cheng M and Hu H 2014 Complexity, DOI: 10.1002cplx.21628
|
[47] |
Wan X J and Sun J T 2011 Math. Comput. Simul. 81 1609
|
[48] |
Li K and Lai C H 2008 Phys. Lett. A 372 1601
|
[49] |
Mahdavi N, Menhaj M B, Kurths J and Ju J Q 2013 IEEE Trans. Cyber. 43 648
|
[50] |
Diethelm K and Ford N J 2002 J. Math. Anal. Appl. 265 229
|
[51] |
Odibat Z and Momani S 2006 Int. J. Nonlinear Sci. Numer. Simul. 7 27
|
[52] |
Zhao L J and Deng W H 2014 Adv. Comput. Math. 40 137
|
[53] |
Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
|
[54] |
Momani S and Odibat Z J 2007 Comput. Appl. Math. 207 96
|
[55] |
Leung A Y T, Li X F, Chu Y D and Rao X B 2015 Appl. Math. Comput. 253 172
|
[56] |
Matouk A E 2009 Phys. Lett. A 373 2166
|
[57] |
Matouk A E and Elsadany A A 2014 Appl. Math. Lett. 29 30
|
[58] |
Chen Z Q, Yang Y, Qi G Y and Yuan Z Z 2007 Phys. Lett. A 360 696
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|