Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090502    DOI: 10.1088/1674-1056/22/9/090502
GENERAL Prev   Next  

Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof

Song Rui-Zhuo (宋睿卓)a, Xiao Wen-Dong (肖文栋)a, Sun Chang-Yin (孙长银)a, Wei Qing-Lai (魏庆来)b
a School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
b The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.
Keywords:  chaotic systems      approximation error      adaptive dynamic programming      optimal tracking control  
Received:  06 December 2012      Revised:  25 March 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the Open Research Project from SKLMCCS (Grant No. 20120106), the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-TP-13-018A), the Postdoctoral Science Foundation of China (Grant No. 2013M530527), and the National Natural Science Foundation of China (Grant Nos. 61304079, 61125306, and 61034002).
Corresponding Authors:  Song Rui-Zhuo     E-mail:  ruizhuosong@163.com

Cite this article: 

Song Rui-Zhuo (宋睿卓), Xiao Wen-Dong (肖文栋), Sun Chang-Yin (孙长银), Wei Qing-Lai (魏庆来) Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof 2013 Chin. Phys. B 22 090502

[1] Balakrishnan S and Biega V 1996 J. Guid. Control Dynam. 19 893
[2] Chen S and Lu J 2002 Chaos Soliton. Fract. 14 643
[3] Enns R and Si J 2003 IEEE Tran. Neural Netw. 14 929
[4] Héno M 1976 Commun. Math. Phys. 50 69
[5] Lewis F and Vrabie D 2009 IEEE Circ. Syst. Mag. 9 32
[6] Liu D and Wei Q 2012 IEEE Tran. Syst. Man Cyber. B 43 779
[7] Lu J, Wu X, Lü J and Kang L 2004 Chaos Soliton. Fract. 22 311
[8] Ma T and Fu J 2011 Chin. Phys. B 20 050511
[9] Ma T, Fu J and Sun Y 2010 Chin. Phys. B 19 090502
[10] Ma T, Zhang H and Fu J 2008 Chin. Phys. B 17 4407
[11] Murray J, Cox C, Lendaris G and Saeks R 2002 IEEE Tran. Syst. Man Cyber. B 32 140
[12] Si J and Wang Y 2001 IEEE Tran. Neural Netw. 12 264
[13] Vamvoudakis K and Lewis F 2010 Automatica 46 878
[14] Wang F, Jin N, Liu D and Wei Q 2011 IEEE Tran. Neural Netw. 22 24
[15] Wang F, Zhang H and Liu D 2009 IEEE Computational Intelligence Magazine 4 39
[16] Werbos P 1991 Neural Network Control (edited by Miller W T, Sutton R S and Werbos P J) (Cambridge: MIT Press) pp. 67-95
[17] Werbos P 1992 Approximate Dynamic Programming for Real-Time Control and Neural Modelingin Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches (edited by White D A and Sofge D A) (New York: Van Nostrand Reinhold) ch. 13
[18] Zhang H, Cui L, Zhang X and Luo Y 2011 IEEE Tran. Neural Netw. 22 2226
[19] Zhang H, Huang W, Wang Z and Chai T 2006 Phys. Lett. A 350 363
[20] Zhang H, Ma T, Fu J and Tong S 2009 Chin. Phys. B 18 3751
[21] Zhang H, Song R, Wei Q and Zhang T 2011 IEEE Tran. Neural Netw. 22 1851
[22] Zhang H, Wang Z and Liu D 2004 Int. J. Bifur. Chaos 14 1
[23] Zhang H, Wei Q and Liu D 2011 Automatica 47 207
[24] Zhang H, Wei Q and Luo Y 2008 IEEE Tran. Syst. Man Cyber. B 38 937
[1] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[2] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[3] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[4] Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target
Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯). Chin. Phys. B, 2018, 27(9): 090501.
[5] A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems
Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛). Chin. Phys. B, 2018, 27(1): 010203.
[6] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[7] Chaotic system optimal tracking using data-based synchronous method with unknown dynamics and disturbances
Ruizhuo Song(宋睿卓), Qinglai Wei(魏庆来). Chin. Phys. B, 2017, 26(3): 030505.
[8] Off-policy integral reinforcement learning optimal tracking control for continuous-time chaotic systems
Wei Qing-Lai (魏庆来), Song Rui-Zhuo (宋睿卓), Sun Qiu-Ye (孙秋野), Xiao Wen-Dong (肖文栋). Chin. Phys. B, 2015, 24(9): 090504.
[9] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[10] Policy iteration optimal tracking control for chaotic systems by using an adaptive dynamic programming approach
Wei Qing-Lai (魏庆来), Liu De-Rong (刘德荣), Xu Yan-Cai (徐延才). Chin. Phys. B, 2015, 24(3): 030502.
[11] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[12] Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
Wang Rui (王蕊), Sun Hui (孙辉), Wang Jie-Zhi (王杰智), Wang Lu (王鲁), Wang Yan-Chao (王晏超). Chin. Phys. B, 2015, 24(2): 020501.
[13] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[14] A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm
Song Rui-Zhuo (宋睿卓), Xiao Wen-Dong (肖文栋), Wei Qing-Lai (魏庆来). Chin. Phys. B, 2014, 23(5): 050504.
[15] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
No Suggested Reading articles found!