Please wait a minute...
Chinese Physics, 2001, Vol. 10(12): 1113-1117    DOI: 10.1088/1009-1963/10/12/306
GENERAL Prev   Next  

SENSITIVE ERROR ANALYSIS OF CHAOS SYNCHRONIZATION

Huang Xian-gao (黄显高)ab, Xu Jian-xue (徐健学)a, Huang Wei (黄伟)c, Lü Ze-jun (吕泽均)d
a School of Architectural Engineering and Mechanics, Xi'an Jiaotong University, Xi'an 710049, China; b The Air Force University of Engineering, Xi'an 710038, China ; c School of Telecommunication Engineering, Xidian University, Xi'an 710071, China; d University of Electronic Science and Technology, Chengdu 610054, China
Abstract  We study the synchronizing sensitive errors of chaotic systems for adding other signals to the synchronizing signal. Based on the model of the Henon map masking, we examine the cause of the sensitive errors of chaos synchronization. The modulation ratio and the mean square error are defined to measure the synchronizing sensitive errors by quality. Numerical simulation results of the synchronizing sensitive errors are given for masking direct current, sinusoidal and speech signals, separately. Finally, we give the mean square error curves of chaos synchronizing sensitivity and three-dimensional phase plots of the drive system and the response system for masking the three kinds of signals.
Keywords:  chaos synchronization      sensitive error  
Received:  26 April 2001      Revised:  17 June 2001      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Uu (Integral transforms)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10172094), the Foundation of the National Defence Science and Technology Key Laboratory (Grant No. 51436) and the Doctor Foundation of Xi'an Jiaotong University (Grant No. DF

Cite this article: 

Huang Xian-gao (黄显高), Xu Jian-xue (徐健学), Huang Wei (黄伟), Lü Ze-jun (吕泽均) SENSITIVE ERROR ANALYSIS OF CHAOS SYNCHRONIZATION 2001 Chinese Physics 10 1113

[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[3] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[4] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[5] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[6] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[7] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[8] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[9] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi . Chin. Phys. B, 2012, 21(6): 060504.
[10] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[11] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2012, 21(3): 030502.
[12] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[13] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(8): 080505.
[14] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi and Vahid Johari Majd . Chin. Phys. B, 2011, 20(12): 120503.
[15] Generalized chaos synchronization of a weighted complex network with different nodes
Lü Ling(吕翎), Li Gang(李钢), Guo Li(郭丽), Meng Le(孟乐),Zou Jia-Rui(邹家蕊), and Yang Ming(杨明). Chin. Phys. B, 2010, 19(8): 080507.
No Suggested Reading articles found!