Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 050504    DOI: 10.1088/1674-1056/25/5/050504
GENERAL Prev   Next  

Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network

Zhi-Zhong Tan(谭志中)
Department of Physics, Nantong University, Nantong 226019, China
Abstract  

A rectangular m×n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform (RT) method, a problem that has never been resolved before, for the Green's function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h1 = 1-cosφi-sinφicotnφi. This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits.

Keywords:  rectangular network      exact solution      RT method      complex impedance  
Received:  18 November 2015      Revised:  17 December 2015      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  84.30.Bv (Circuit theory)  
  89.20.Ff (Computer science and technology)  
  02.10.Yn (Matrix theory)  
Fund: 

Project supported by the Prophase Preparatory Project of Natural Science Foundation of Nantong University, China (Grant No. 15ZY16).

Corresponding Authors:  Zhi-Zhong Tan     E-mail:  tanz@ntu.edu.cn,tanzzh@163.com

Cite this article: 

Zhi-Zhong Tan(谭志中) Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network 2016 Chin. Phys. B 25 050504

[1] Kirchhoff G 1847 Ann. Phys. Chem. 148 497
[2] Kirkpatrick S 1973 Rev. Mod. Phys. 45 574
[3] Klein D J and Randi M 1993 J. Math. Chem. 12 81
[4] Xiao W J and Gutman I 2003 Theory Chem. Acc. 110 284
[5] Cserti J 2000 Am. J. Phys. 68 896
[6] Asad J H 2013 J. Stat. Phys. 150 1177
[7] Asad J H 2013 Mod. Phys. Lett. B 27 1350112
[8] Wu F Y 2004 J. Phys. A: Math. Gen. 37 6653
[9] Tzeng W J and Wu F Y 2006 J. Phys. A: Math. Gen. 39 8579
[10] Izmailian N Sh, Kenna R and Wu F Y 2014 J. Phys. A: Math. Theor. 47 035003
[11] Tan Z Z 2011 Resistance Network Model (Xi'an, China: Xidian University Press)
[12] Tan Z Z, Zhou L and Yang J H 2013 J. Phys. A: Math. Theor. 46 195202
[13] Tan Z Z, Zhou L and Luo D F 2015 Int. J. Circ. Theor. Appl. 43 329
[14] Tan Z Z 2015 Int. J. Circ. Theor. Appl. 43 1687
[15] Tan Z Z, Essam J W and Wu F Y 2014 Phys. Rev. E 90 012130
[16] Essam J W, Tan Z Z and Wu F Y 2014 Phys. Rev. E 90 032130
[17] Tan Z Z and Fang J H 2015 Commun. Theor. Phys. 63 36
[18] Tan Z Z 2015 Chin. Phys. B 24 020503
[19] Tan Z Z 2015 Phys. Rev. E 91 052122
[20] Tan Z Z 2015 Sci. Rep. 5 11266
[21] Tan Z Z and Zhang Q H 2015 Int. J. Circ. Theor. Appl. 43 944
[22] Whan C B and Lobb C J 1996 Phys. Rev. E 53 405
[23] Zhuang J, Yu G R and Nakayama K 2014 Sci. Rep. 4 06720
[24] Jia L P, Jasmina T and Duan W S 2015 Chin. Phys. Lett. 32 040501
[25] Qin M P, Chen J, Chen Q N, Xie Z Y, Kong X, Zhao H H, Bruce N and Xiang T 2013 Chin. Phys. Lett. 30 076402
[26] Wang B, Huang H L, Sun Z Y and Kou S P 2012 Chin. Phys. Lett. 29 120301
[27] Wang H N, Chen D, Pan W, Xue Y and He H D 2014 Chin. Phys. B 23 080505
[28] Xiao Q, Pan X, Li X L, Mutua S, Yang H J, Jiang Y, Wang J Y and Zhang Q J 2014 Chin. Phys. B 23 078904
[29] Li M and Wang B H 2014 Chin. Phys. B 23 076402
[30] Zhang L S, Liao X H, Mi Y Y, Qian Y and Hu G 2014 Chin. Phys. B 23 078906
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[7] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[8] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[9] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[10] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[11] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[12] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[13] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
[14] Improvement of variational approach in an interacting two-fermion system
Liu Yan-Xia (刘彦霞), Ye Jun (叶君), Li Yuan-Yuan (李源远), Zhang Yun-Bo (张云波). Chin. Phys. B, 2015, 24(8): 086701.
[15] Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary
Tan Zhi-Zhong (谭志中). Chin. Phys. B, 2015, 24(2): 020503.
No Suggested Reading articles found!