Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1994, Vol. 3(7): 512-518    DOI: 10.1088/1004-423X/3/7/005
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

THE ANNEALING FEATURES OF Ta/Si MULTILAYER FILMS

LU JIANG (卢江), ZHOU GUI-EN (周贵恩), ZHANG SHU-YUAN (张庶元), JIA YUN-BO (贾云波), LI FAN-QING (李凡庆), HUANG YUN-LAN (黄允兰), TAN SHUN (谭舜), SHI LEI (石磊), ZHANG YU-HENG (张裕恒)
Laboratory of Structure Analysis, University of Science and Technology of China, Hefei 230026, China
Abstract  The Ta/Si multilayers on (100) Si substrate have been studied over the annealing temper-ature range from 500 to 900℃ by X-ray diffraction and cross-section transmission electron microscopy. The periodicity of the multilayers becomes worse with increasing annealing tem-perature and disappears at 750℃. At 600℃, two kinds of modulation wavelength coexist because the size of several TaSi2 grains is larger than the contracted original modulation wavelength. The films are contracted after annealing. The largest contraction, at least 40nm decreasing in thickness, occurs at 600℃. When the annealing temperature is lower than 600℃, h-TaSi2 grains grow randomly and the growth is not affected by the substrate. At temperatures higher than 750℃, h-TaSi2 grows preferentially in [001] direction parallel to [100] axis of Si substrate. The appearance of texture depends on whether the atomic diffusion is short range or long range at the corresponding annealing temperature.
Received:  12 July 1993      Accepted manuscript online: 
PACS:  68.65.Ac (Multilayers)  
  81.40.Gh (Other heat and thermomechanical treatments)  
  68.55.-a (Thin film structure and morphology)  
  68.37.Lp (Transmission electron microscopy (TEM))  

Cite this article: 

LU JIANG (卢江), ZHOU GUI-EN (周贵恩), ZHANG SHU-YUAN (张庶元), JIA YUN-BO (贾云波), LI FAN-QING (李凡庆), HUANG YUN-LAN (黄允兰), TAN SHUN (谭舜), SHI LEI (石磊), ZHANG YU-HENG (张裕恒) THE ANNEALING FEATURES OF Ta/Si MULTILAYER FILMS 1994 Acta Physica Sinica (Overseas Edition) 3 512

[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[5] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[6] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
[7] Electro-optical dual modulation on resistive switching behavior in BaTiO3/BiFeO3/TiO2 heterojunction
Jia-Jia Zhao(赵佳佳), Jin-Shuai Zhang(张金帅), Feng Zhang(张锋), Wei Wang(王威), Hai-Rong He(何海蓉), Wang-Yang Cai(蔡汪洋), Jin Wang(王进). Chin. Phys. B, 2019, 28(12): 126801.
[8] Evolutionary algorithm for optimization of multilayer coatings
Mahdi Ebrahimi, Mohsen Ghasemi, Zeinab Sajjadi. Chin. Phys. B, 2018, 27(10): 106802.
[9] Electronic and magnetic properties of semihydrogenated, fully hydrogenated monolayer and bilayer MoN2 sheets
Yan-Chao She(佘彦超), Zhao Wei(魏昭), Kai-Wu Luo(罗开武), Yong Li(李勇), Yun Zhang(张云), Wei-Xi Zhang(张蔚曦). Chin. Phys. B, 2018, 27(6): 060306.
[10] Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures
Hao-Nan Liu(刘浩男), Xiao-Xia Suo(索晓霞), Lin-Ao Zhang(张林奥), Duan Zhang(张端), Han-Chun Wu(吴汉春), Hong-Kang Zhao(赵宏康), Zhao-Tan Jiang(江兆潭), Ying-Lan Li(李英兰), Zhi Wang(王志). Chin. Phys. B, 2018, 27(2): 027104.
[11] Establishment of infinite dimensional Hamiltonian system of multilayer quasi-geostrophic flow & study on its linear stability
Si-xun Huang(黄思训), Yu Wang(王宇), Jie Xiang(项杰). Chin. Phys. B, 2017, 26(11): 114701.
[12] Effects of energy dissipation on anisotropic materials
Zhang Ling-Yun (张凌云). Chin. Phys. B, 2015, 24(7): 076501.
[13] Stacking stability of MoS2 bilayer: An ab initio study
Tao Peng (陶鹏), Guo Huai-Hong (郭怀红), Yang Teng (杨腾), Zhang Zhi-Dong (张志东). Chin. Phys. B, 2014, 23(10): 106801.
[14] A GaN–AlGaN–InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED
Yang Bin (杨斌), Guo Zhi-You (郭志友), Xie Nan (解楠), Zhang Pan-Jun (张盼君), Li Jing (李婧), Li Fang-Zheng (李方正), Lin Hong (林宏), Zheng Huan (郑欢), Cai Jin-Xin (蔡金鑫). Chin. Phys. B, 2014, 23(4): 048502.
[15] Microstructure and properties of Nb/Ta multilayer films irradiated by high current pulse electron beam
Ma Xin-Xin (马欣新), Guo Guang-Wei (郭光伟), Tang Guang-Ze (唐光泽), Sun Ming-Ren (孙明仁), Wang Li-Qin (王黎钦). Chin. Phys. B, 2013, 22(5): 056202.
No Suggested Reading articles found!