CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of energy dissipation on anisotropic materials |
Zhang Ling-Yun (张凌云) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract A model and its simulations are presented to describe the effects of energy dissipation on anisotropic systems. When the current electromigration is constant, energy dissipation depends on lattice constants, resistivity, and the angles along the longitudinal and transversal directions. It is shown that an orientation variation of the grain can significantly influence the energy dissipation for some anisotropic materials. Based on calculations for the grain model, the mechanism of grain growth and microstructure evolution under electromigration is explained. Theoretical implications about material selection and reliability are derived.
|
Received: 06 January 2015
Revised: 01 April 2015
Accepted manuscript online:
|
PACS:
|
65.40.gh
|
(Work functions)
|
|
81.05.Bx
|
(Metals, semimetals, and alloys)
|
|
66.30.Qa
|
(Electromigration)
|
|
68.65.Ac
|
(Multilayers)
|
|
Corresponding Authors:
Zhang Ling-Yun
E-mail: lyzhang@iphy.ac.cn
|
Cite this article:
Zhang Ling-Yun (张凌云) Effects of energy dissipation on anisotropic materials 2015 Chin. Phys. B 24 076501
|
[1] |
Tu K N 2003 J. Appl. Phys. 94 5451
|
[2] |
Blech I A and Sello H 1967 Physics of Failure in Electronics 5 496
|
[3] |
Lu M, Shih D Y, Lauro P, Goldsmith C and Henderson D W 2008 Appl. Phys. Lett. 92 211909
|
[4] |
Huntington H B and Grone A R 1961 J. Phys. Chem. Solids 20 76
|
[5] |
Rosenberg R, Edelstein D C, Hu C K and Rodbell K P 2000 Annu. Rev. Mater. Sci. 30 229
|
[6] |
Tu K N 1994 IBM Tech. Discl. Bull. 37 61
|
[7] |
Landauer R and Woo J W F 1974 Phys. Rev. B 10 1266
|
[8] |
Zhang L Y, Ou S Q, Huang J, Tu K N, Gee S and Nguyen L 2006 Appl. Phys. Lett. 88 012106
|
[9] |
Lee T Y, Tu K N and Frear D R 2001 J. Appl. Phys. 90 4502
|
[10] |
Yeh E C C, Choi W J, Tu K N, Elenius P and Balkan H 2002 Appl. Phys. Lett. 80 580
|
[11] |
Yan H, Zhang W J, Jiang H Y and Chen L 2014 Chin. Phys. B 23 040702
|
[12] |
Liu C Y, Chen C and Tu K N 2000 J. Appl. Phys. 88 5703
|
[13] |
Tu K N and Gosele U 2005 Appl. Phys. Lett. 86 093111
|
[14] |
Zhang L, Ma G J, Lin G Q, Ma H and Han K C 2014 Chin. Phys. B 23 048102
|
[15] |
Lang N D and Avouris P 1998 Phys. Rev. Lett. 81 3515
|
[16] |
Tang Z K, Zhang L Y, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462
|
[17] |
Cao Y Z, Li G J, Wang Q, Ma Y H, Wang H M and He J C 2013 Acta Phys. Sin. 62 227501 (in Chinese)
|
[18] |
Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A and Alivisatos A P 2004 Science 304 711
|
[19] |
Todorov T N, Hoekstra J and Sutto A P 2001 Phys. Rev. Lett. 86 3606
|
[20] |
Ventra M D and Chen Y C 2004 Phys. Rev. Lett. 92 176803
|
[21] |
Wei B Q, Vajtai R and Ajaya P M 2001 Appl. Phys. Lett. 79 1172
|
[22] |
Ho P S and Kwok T 1989 Rep. Prog. Phys. 52 301
|
[23] |
Blech I A and Meieran E S 1967 Appl. Phys. Lett. 11 263
|
[24] |
Dekker J P, Volkert C A, Arzt E and Gumbsch P 2001 Phys. Rev. Lett. 87 035901
|
[25] |
Todorov T N 2001 J. Phys. Condens. Matter 13 10125
|
[26] |
Spolenak R, Kraft O and Arz E 1998 Microelectron. Reliab. 38 1015
|
[27] |
Kunz M, Tamura N, Chen K, MacDowell A A, Celestre R S, Church M M, Fakra S, Domning E E, Glossinger J M, Plate D W, Smith B V, Warwick T, Padmore H A and Ustundag E 2009 Review of Scientific Instruments 80 035108
|
[28] |
Callister W D Jr 2000 Materials Science and Engineering an Introduction (New York: Wiley)
|
[29] |
Wu A T, Tu K N, Lloyd J R, Tamura N, Valek B C and Kao C R 2004 Appl. Phys. Lett. 85 2490
|
[30] |
Nye J F 1985 Physical Properties of Crystals: Their Representation by Tensors and Matrices (New York: Oxford University Press)
|
[31] |
Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill)
|
[32] |
Bridgman P W 1952 Proc. Am. Acad. Arts. Sci. 81 167
|
[33] |
Chen K, Tamura N and Tu K N 2009 Materials Research Society Symposium Proceedings I05-06 1116
|
[34] |
Lloyad J R 2003 J. Appl. Phys. 94 6483
|
[35] |
Chen K, Tamura N, Kunz M, Tu K N and Lai Y S 2009 J. Appl. Phys. 106 023502
|
[36] |
Goldstein H 1950 Classical Mechanics
|
[37] |
Tu K N 1977 J. Appl. Phys. 48 3400
|
[38] |
Parkin S S P, More N and Roche Y P 1990 Phys. Rev. Lett. 64 2304
|
[39] |
Steren L B, Barthelemy A, Duvail J L, Fert A, Morel R and Petroff F 1995 Phys. Rev. B 51 292
|
[40] |
Zhang L Y, Sun H, Li B Z and Pu F C 1999 J. Phys. D: Appl. Phys. 32 1214
|
[41] |
Zhang S and Levy P M 1996 Phys. Rev. Lett. 77 916
|
[42] |
Itoh H, Inoue J and Maekawe S 1996 Phys. Rev. Lett. 77 916
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|