Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 106802    DOI: 10.1088/1674-1056/27/10/106802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Evolutionary algorithm for optimization of multilayer coatings

Mahdi Ebrahimi1, Mohsen Ghasemi2, Zeinab Sajjadi3
1 Department of Physics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran;
2 Department of Physics, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran;
3 Department of Computer & Mathematics, Sheikhbahaee University, Isfahan, Iran
Abstract  

In this paper, a new evolutionary algorithm, the well-known imperialist competition algorithm, is proposed for optimizing the optical thin-films. In this method, the process is modeled of the competition between countries as imperialists and their colonizing of others as colonies. This algorithm could be an appropriate alternative to some of the more popular algorithms for optimizing the optical thin-films for good performance. The polarizer and edge filter for example are designed by using the imperialist competition algorithm method and the results are compared with those from two optimization high-performance methods:the genetic algorithm and differential evolutionary algorithm. Based on these results, the performance of the imperialist competition algorithm method shows that this algorithm is not sensitive to the change of its parameters and it can be an important advantage for quickly achieving a global optimal point. On the other hand the results show a better ratio of P-polarization transmittance to S-polarization transmittance in the design of a 1540-nm polarizer, which is more appropriate than the results from the other two methods. In the second design, an edge filter with a lower number of layers and more uniform bandpass spectrum than the counterparts of those methods is obtained. These results indicate that the imperialist competition algorithm is a robust method for optical thin-film designs.

Keywords:  multilayers      optimization      thin-film imperialist competition algorithm  
Received:  28 May 2018      Revised:  17 July 2018      Accepted manuscript online: 
PACS:  68.65.Ac (Multilayers)  
  02.60.Pn (Numerical optimization)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
Corresponding Authors:  Mahdi Ebrahimi     E-mail:  ma.ebrahimi@pnu.ac.ir

Cite this article: 

Mahdi Ebrahimi, Mohsen Ghasemi, Zeinab Sajjadi Evolutionary algorithm for optimization of multilayer coatings 2018 Chin. Phys. B 27 106802

[1] Thelen A 1989 Design of optical interference coatings (Texas:McGrow-Hill)
[2] Dobrowolski J A 1995 "Optical properties of films and coating", in Handbook of optics, Vol. I, Chp. 42 (New York:Mc Graw-Hill) p. 1374
[3] Yang J M and Kao C Y 2001 J. lightwave Technol. 19 559
[4] Tikhonravov A V and Trubetskov M K 2007 J. Opt. Technol. 74 845
[5] Tikhonravov A V, Trubetskov M K and DeBell G W 2007 Appl. Opt. 46 704
[6] Back T and Schwefel H P 1993 Evol. Comput. 1 1
[7] Yang J M and Kao C Y 2000 Evol.Comput. 2 978
[8] Schubert M F, Mont F W, Chhajed S, Poxson D J, Kim J K and Schubert E F 2008 Opt. Express 16 5290
[9] Jiang L Y, Zheng G G, Shi L X, Yuan J and Li X Y 2008 Opt Commun. 281 4882
[10] Jia W, Jiang L, Zheng G, Li X and Li X 2010 Opt. Laser Technol. 42 382
[11] Sikder U and Zaman M A 2016 Opt. Laser Technol. 79 88
[12] Atashpaz Gargari E and Lucas C 2007 Proceedings of IEEE Conference on Evolutionary Computation, p. 4661
[13] Alvisi M, De Nunzio G, Di Giulio M, Ferrara M C, Perrone M R, Protopapa L and Vasanelli L 1999 Appl. Opt. 38 1237
[14] Wood R M 2003 Laser-induced damage of optical materials (Bristol:IoP Publishing)
[15] Linsbod R, Ritter E and Leitner K 2003 Appl. Opt. 42 4580
[16] Pulker H K, Paesold G and Ritter E 1976 Appl.Opt. 15 2986
[17] Dobrowolski J A and Kemp R A 1990 Appl. Opt. 29 2876
[18] Sullivan B T and Dobrowolski J A 1996 Appl. Opt. 35 5484
[19] Monga J C, Gupta P D and Bhawlkar D D 1984 Appl. Opt. 23 3538
[20] Macleod H A 2010 Thin-film Optical Filters (Boca Raton:CRC Press/Taylor & Francis)
[21] Dobrowolski J A and Waldorf A 1981 Appl. Opt. 20 111
[22] Gavrilov N I, Pashinin P P, Prokhorov A M, Prilyuk O M, Sergeev S N, Serov R V, Furman S A, Yanovskii V P and Vvedenskii V D 1983 Sov. J. Quantum Electron. 13 1272
[23] Kaiser N and Pulker H K 2003 Optical Interference Coating (Berlin:Springer)
[24] Ebrahimi M and Ghasemi M 2018 Opt. Quantum Electron. 50 129
[25] Sahraee M, Fallah H R, Moradi B, Zabolian H and Haji Mahmoodzade M 2014 Eur. Phys. J. Plus 129 277
[26] Li L, Wang Q H, Li D H and Peng H R 2009 Opt. Express 17 16920
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[5] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[6] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[7] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[8] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[9] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[10] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[11] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[12] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[13] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[14] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[15] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
No Suggested Reading articles found!