Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 108501    DOI: 10.1088/1674-1056/ab3a8b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance

Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风)
Institute of Electrical and Electronic Engineering, Anhui Science and Technology University, Fengyang 233100, China
Abstract  A tunnel field-effect transistor (TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric (HGD), and dual-material control-gate (DMCG) technology. The effects of the length of non-uniform gate-oxide layer and dual-material control-gate on the on-state, off-state, and ambipolar currents are investigated. In addition, radio-frequency performance is studied in terms of gain bandwidth product, cut-off frequency, transit time, and transconductance frequency product. Moreover, the length of non-uniform gate-oxide layer and dual-material control-gate are optimized to improve the on-off current ratio and radio-frequency performances as well as the suppression of ambipolar current. All results demonstrate that the proposed device not only suppresses ambipolar current but also improves radio-frequency performance compared with the conventional DMCG TFET, which makes the proposed device a better application prospect in the advanced integrated circuits.
Keywords:  non-uniform gate-oxide layer      ambipolar current      radio-frequency performances      tunnel field-effect transistor  
Received:  05 January 2019      Revised:  25 July 2019      Accepted manuscript online: 
PACS:  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  81.05.Ea (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the University Natural Science Research Key Project of Anhui Province, China (Grant No. KJ2017A502), the Introduced Talent Project of Anhui Science and Technology University, China (Grant No. DQYJ201603), the Excellent Talents Supporting Project of Colleges and Universities, China (Grant No. gxyq2018048), and the Innovation and Entrepreneurship Training Program for College Students, China (Grant No. 2018S10879052).
Corresponding Authors:  Hui-Fang Xu     E-mail:  xu0342@163.com

Cite this article: 

Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风) Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance 2019 Chin. Phys. B 28 108501

[1] Guan Y H, Li Z C, Luo D X, Meng Q Z and Zhang Y F 2016 Chin. Phys. B 25 108502
[2] Dash S and Mishra G P 2015 Superlattices Microstruct. 86 211
[3] Vishnoi R and Kumar M J 2014 IEEE Trans. Electron. Dev. 61 2599
[4] Dash S and Mishra G P 2015 Adv. Nat. Sci.: Nanosci. Nanotechnol. 6 035005
[5] Sharma A, Goud A A and Roy K 2014 IEEE Electron Dev. Lett. 35 1221
[6] Ameen T A, Ilatikhameneh H, Fay P, Seabaugh A, Rahman R and Klimeck G 2019 IEEE Trans. Electron. Dev. 66 736
[7] Toh E H, Wang G H, Chan L, Sylvester D, Heng C H, Ganesh S S and Yeo Y C 2008 Jpn. J. Appl. Phys. 47 2593
[8] Han G Q, Wang Y B, Liu Y, Zhang C F, Feng Q, Liu M S, Zhao S L, Cheng B W, Zhang J C and Hao Y 2016 IEEE Electron Dev. Lett. 37 701
[9] Wang H J, Han G Q, Liu Y, Hu S D, Zhang C F, Zhang J C and Hao Y 2016 IEEE Trans. Electron Dev. 63 303
[10] Liu M S, Liu Y, Wang H J, Zhang Q F, Zhang C F, Hu S D, Hao Y and Han G Q 2015 IEEE Trans. Electron Dev. 62 1262
[11] Kotlyar R, Avci U E, Cea S, Rios R, Linton T D, Kuhn K J and Young I A 2013 Appl. Phys. Lett. 102 113106
[12] Boucart K and Ionescu A M 2007 IEEE Trans. Electron Dev. 54 1725
[13] Wu Y, Hasegawa H, Kakushima K, Ohmori K, Watanabe T, Nishiyama A, Sugii N, Wakabayashi H, Tsutsui K, Kataoka Y, Natori K, Yamada K and Iwai H 2014 Microeletron. Reliab. 54 899
[14] Rahi S B, Ghosh B and Asthana P 2014 J. Semicond. 35 114005
[15] Duan X, Zhang J, Wang S, Li Y, Xu S and Hao Y 2018 IEEE Trans. Electron Dev. 65 1223
[16] Ghosh S, Koley K, Saha S K, and Sarkar C K 2016 IEEE Trans. Electron Dev. 63 3869
[17] Zhao Y, Wu C L, Huang Q Q, Chen C, Zhu J D, Guo L Y, Jia R D, Lv Z, Yang Y C, Li M and Huang R 2017 IEEE Electron Dev. Lett. 38 540
[18] Cui N, Liang R R and Xu J 2011 Appl. Phys. Lett. 98 142105
[19] Zhang S Q, Liang R R, Wang J, Tan Z and Xu J 2017 Chin. Phys. B 26 018504
[20] Xu H F, Dai Y H, Guan B G and Zhang Y F 2016 Jpn. J. Appl. Phys. 55 094001
[21] Raad B R, Sharma D, Kondekar P, Nigam K and Yadav D S 2016 IEEE Trans. Electron Dev. 63 3950
[22] Tirkey S, Sharma D, Raad B R and Yadav D S 2018 IEEE Trans. Electron Dev. 65 282
[23] Nigam K, Pandey S, Kondekar P N, Sharma D and Parte P K 2017 IEEE Trans. Electron Dev. 64 2751
[24] Wu J Z and Taur Y 2016 IEEE Trans. Electron Dev. 63 3342
[25] Xu P, Lou H, Zhang L, Yu Z and Lin X 2017 IEEE Trans. Electron Dev. 64 5242
[26] Kumar P and Bhowmick B 2018 Micro & Nano Lett. 13 626
[27] Lu B, Lu H, Zhang Y, Zhang Y, Cui X, Lv Z and Liu C 2018 IEEE Trans. Electron Dev. 65 3555
[28] Kang I M, Jang J S and Choi W Y 2011 Jpn. J. Appl. Phys. 50 124301
[29] Yadav D S, Sharma D, Tirkey S, Bajaj V 2018 J. Comput. Electron 17 118
[30] Shaker A, ElSabbagh M and El-Banna M M 2019 Physica E: Low-dimensional Systems and Nanostructures 106 346
[31] Dash D K, Saha P and Sarkar S K 2018 J. Comput. Electron. 17 181
[32] ATLAS User's Manual (Silvaco Int., Santa Clara, C A 2012)
[33] Kane E O 1960 J. Phys. Chem. Solids 12 181
[34] Kumar S, Goel E, Singh K, Singh B, Singh P K, Baral K and Jit S 2017 IEEE Trans. Electron Dev. 64 960
[35] Wu C L, Huang Q Q, Zhao Y, Wang J X, Wang Y Y and Huang R 2016 IEEE Trans. Electron Dev. 63 5072
[1] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[2] Characteristic enhancement in tunnel field-effect transistors via introduction of vertical graded source
Zhijun Lyu(吕智军), Hongliang Lu(吕红亮), Yuming Zhang(张玉明), Yimen Zhang(张义门), Bin Lu(芦宾), Yi Zhu(朱翊), Fankang Meng(孟凡康), Jiale Sun(孙佳乐). Chin. Phys. B, 2020, 29(5): 058501.
[3] Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer
Ru Han(韩茹), Hai-Chao Zhang(张海潮), Dang-Hui Wang(王党辉), Cui Li(李翠). Chin. Phys. B, 2019, 28(1): 018505.
[4] Ge/Si heterojunction L-shape tunnel field-effect transistors with hetero-gate-dielectric
Cong Li(李聪), Zhi-Rui Yan(闫志蕊), Yi-Qi Zhuang(庄奕琪), Xiao-Long Zhao(赵小龙), Jia-Min Guo(郭嘉敏). Chin. Phys. B, 2018, 27(7): 078502.
[5] Heteromaterial-gate line tunnel field-effect transistor based on Si/Ge heterojunction
Shuqin Zhang(张书琴), Renrong Liang(梁仁荣), Jing Wang(王敬), Zhen Tan(谭桢), Jun Xu(许军). Chin. Phys. B, 2017, 26(1): 018504.
[6] Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor
Zhi Jiang(蒋 智), Yi-Qi Zhuang(庄奕琪), Cong Li(李 聪), Ping Wang(王 萍), Yu-Qi Liu(刘予琪). Chin. Phys. B, 2016, 25(2): 027701.
[7] Two-dimensional threshold voltage model of nanoscale silicon-on-insulator tunneling field-effect transistor
Li Yu-Chen (李妤晨), Zhang He-Ming (张鹤鸣), Zhang Yu-Ming (张玉明), Hu Hui-Yong (胡辉勇), Wang Bin (王斌), Lou Yong-Le (娄永乐), Zhou Chun-Yu (周春宇). Chin. Phys. B, 2013, 22(3): 038501.
No Suggested Reading articles found!