Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 046801    DOI: 10.1088/1674-1056/28/4/046801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Interaction of two symmetric monovacancy defects in graphene

Wen-Yan Xu(徐文焱)1,2, Li-Zhi Zhang(张礼智)1, Li Huang(黄立)1, Yan-De Que(阙炎德)1, Ye-Liang Wang(王业亮)1, Xiao Lin(林晓)1, Shi-Xuan Du(杜世萱)1
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 Suzhou Saibao Calibration Technology Co., Ltd., No. 4, Baotong Road, Wuzhong District, Suzhou 215100, China
Abstract  

We investigate the interactions between two symmetric monovacancy defects in graphene grown on Ru (0001) after silicon intercalation by combining first-principles calculations with scanning tunneling microscopy (STM). First-principles calculations based on free-standing graphene show that the interaction is weak and no scattering pattern is observed when the two vacancies are located in the same sublattice of graphene, no matter how close they are, except that they are next to each other. For the two vacancies in different sublattices of graphene, the interaction strongly influences the scattering and new patterns' emerge, which are determined by the distance between two vacancies. Further experiments on silicon intercalated graphene epitaxially grown on Ru (0001) shows that the experiment results are consistent with the simulated STM images based on free-standing graphene, suggesting that a single layer of silicon is good enough to decouple the strong interaction between graphene and the Ru (0001) substrate.

Keywords:  monovacancy defect      graphene      density functional theory      STM  
Received:  24 January 2019      Revised:  03 February 2019      Accepted manuscript online: 
PACS:  68.35.Dv (Composition, segregation; defects and impurities)  
  73.22.Pr (Electronic structure of graphene)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.15.-m (Methods of electronic structure calculations)  
Corresponding Authors:  Shi-Xuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Wen-Yan Xu(徐文焱), Li-Zhi Zhang(张礼智), Li Huang(黄立), Yan-De Que(阙炎德), Ye-Liang Wang(王业亮), Xiao Lin(林晓), Shi-Xuan Du(杜世萱) Interaction of two symmetric monovacancy defects in graphene 2019 Chin. Phys. B 28 046801

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[4] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[5] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[6] Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
[7] Huang L, Xu W Y, Que Y D, Pan Y, Gao M, Pan L D, Guo H M, Wang Y L, Du S X and Gao H J 2012 Chin. Phys. B 21 088102
[8] Huang L T, Chen Z, Wang Y X and Lu Y L 2017 Chin. Phys. B 26 103103
[9] Li S and Lv Z T 2017 Chin. Phys. B 26 036303
[10] Yang Y L and Lu Y 2014 Chin. Phys. B 23 106501
[11] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[12] Meyer J C Kisielowski C, Erni R, Rossell M D, Crommie M F and Zettl A 2008 Nano Lett. 8 3582
[13] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Das Sarma S, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803
[14] Ni Z H, Ponomarenko L A, Nair R R, Yang R, Anissimova S, Grigorieva I V, Schedin F, Blake P, Shen Z X, Hill E H, Novoselov K S and Geim A K 2010 Nano Lett. 10 3868
[15] Ugeda M M, Brihuega I, Guinea F and Go'mez-Rodr'guez J M 2010 Phys. Rev. Lett. 104 096804
[16] Zhang Y, Li S Y, Huang H Q, Li W T, Qiao J B, Wang W X, Yin L J, Bai K K, Duan W H and He L 2016 Phys. Rev. Lett. 117 116801
[17] Robertson W, Barbara Montanari, Kuang He, Allen S, Yimin Wu, Harrison M, Kirkl I and Warner H 2013 ACS Nano 7 4495
[18] Zhiming Shi and Udo Schwingenschlögl 2017 JPCC 121 2459
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[20] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. B 16 3151
[23] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[24] Mao J, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101
[25] Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y, Du S, Ouyang M, Pantelides S and Gao H J 2018 Adv. Mater. 30 1804650
[26] Mallet P, Varchon F, Naud C, Magaud L, Berger C and Veuillen J Y 2007 Phys. Rev. B 76 041403
[27] Kelly K F, Sarkar D, Hale G D, Oldenburg S J and Halas N J 1996 Science 273 1371
[28] Ugeda M M, Brihuega I, Hiebel F, Mallet P, Veuillen J Y, Go'mez-Rodr'guez J M and Yndur'ain F 2012 Phys. Rev. B 85 121402
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[11] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[12] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
No Suggested Reading articles found!