Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087306    DOI: 10.1088/1674-1056/26/8/087306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure

Li Xie(谢立)1,2, Luojun Du(杜罗军)1, Xiaobo Lu(卢晓波)1,2, Rong Yang(杨蓉)1,2, Dongxia Shi(时东霞)1,2, Guangyu Zhang(张广宇)1,2,3,4
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2 School of Physical Science, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China;
4 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China
Abstract  

Two-dimensional (2D) Van der Waals heterostructures have aroused extensive concerns in recent years. Their fabrication calls for facile and efficient transfer techniques for achieving well-defined structures. In this work, we report a simple and effective dry transfer method to fabricate 2D heterostructures with a clean interface. Using Propylene Carbonate (PC) films as stamps, we are able to pick up various 2D materials flakes from the substrates and unload them to the receiving substrates at an elevated temperature. Various multilayer heterostructures with ultra-clean interfaces were fabricated by this technique. Furthermore, the 2D materials can be pre-patterned before transfer so as to fabricate desired device structures, demonstrating a facile way to promote the development of 2D heterostructures.

Keywords:  two-dimensional materials      Van der Waals heterostructure      Propylene Carbonate      transfer  
Received:  05 April 2017      Revised:  04 May 2017      Accepted manuscript online: 
PACS:  73.43.Fj (Novel experimental methods; measurements)  
  73.50.-h (Electronic transport phenomena in thin films)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500 and 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, and 51572289), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B), CAS (Grant No. XDB07010100).

Corresponding Authors:  Rong Yang, Guangyu Zhang     E-mail:  ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Li Xie(谢立), Luojun Du(杜罗军), Xiaobo Lu(卢晓波), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇) A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure 2017 Chin. Phys. B 26 087306

[1] Yu W J, Li Z, Zhou H L, Chen Y, Wang Y, Huang Y and Duan X F 2013 Nat. Mater. 12 246
[2] Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
[3] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
[4] Chiu M H, Zhang C D, Shiu H W, Chuu C P, Chen C Y, Chang C Y S, Chen C H, Chou M Y, Shih C K and Li L J 2015 Nat. Commun. 6 7666
[5] Kośmider K and Fernández-Rossier J 2013 Phys. Rev. B 87
[6] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colomb L and Ruff R S 2009 Nano Lett. 9 4359
[7] Gao L B, Ni G X, Liu Y P, Liu B, Neto A H C and Loh K P 2014 Nature 505 190
[8] Elias A L, Perea-Lpez N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutiérrez H R, Pradhan N R, Balicas L, Mallourk T L, Lpez-Urías F, Terrones H and Terrones M 2014 ACS Nano 7 5235
[9] Chen X D, Li Z B, Zheng C Y, Xing F, Yan X Q, Chen Y S and Tian J G 2013 Carbon 56 271
[10] Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 J. Phys. Chem. Lett. 112 17741
[11] Her M, Beams R and Novotny L 2013 Phys. Lett. A 377 1455
[12] Lee C H, McCulloch W, Lee II E W, Ma L, Krishnamoorthy S, Hwang J, Wu Y Y and Rajan S 2015 Appl. Phys. Lett. 107 193503
[13] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M and Dekker C 2010 Nano Lett. 10 1912
[14] Gurarslan A, Yu Y F, Su L Q, Yu Y L, Suarez F, Yao S S, Zhu Y, Ozturk M, Zhang Y and Cao L Y 2014 ACS Nano 8 11522
[15] Li H, Wu J, Huang X, Yin Z, Liu J and Zhang H 2014 ACS Nano 8 6563
[16] Ma D L, Shi J P, Ji Q Q, Chen K, Yin J B, Lin Y W, Zhang Y, Liu M X, Feng Q L, Song X J, Guo X F, Zhang J, Zhang Y F and Liu Z F 2015 Nano Res. 8 3662
[17] Zhang J, Wang J H, Chen P, Sun Y, Wu S, Jia Z Y, Lu X B, Yu H H, Chen W, Zhu J Q, Xie G B, Yang R, Shi D X, Xu X L, Xiang J Y, Liu K H and Zhang G Y 2016 Adv. Mater. 28 1950
[18] Zoomer P J, Dash S P, Tombros N and Wees B J 2011 Appl. Phys. Lett. 99 232104
[19] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Herre S J, van der Zant and Steele G A 2014 2D Materials 1 011002
[20] Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L and Muller D 2013 Science 342 614
[21] Kwak J Y, Hwang J, Calderon B, Alsalman H, Munoz N, Schutter B and Spencer M G 2014 Nano Lett. 14 4511
[22] Yu H, Yang Z Z, Du L J, Zhang J, Shi J N, Chen W, Chen P, Liao M Z, Zhao J, Meng J L, Wang G L, Zhu J Q, Yang R, Shi D X and Zhang G Y 2017 Small 13
[23] Zhao J, Yu H, Chen W, Yang R, Zhu J Q, Liao M Z, Shi D X and Zhang G Y 2016 ACS Appl. Mater. Interfaces 8 16546
[24] Zhang J, Yu H, Chen W, Tian X Z, Liu D H, Cheng M, Xie G B, Yang W, Yang R, Bai X D, Shi D X and Zhang G Y 2014 ACS Nano 8 6024
[25] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[26] Lee H S, Min S W, Park M K, Lee Y T, Jeon J, Kim J H, Ryu S and Lm S 2012 Small 8 3111
[27] Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
[28] Xu K, Chen D X, Yang F Y, Wang Z X, Yin L, Wang F, Cheng R Q, Liu K H, Xiong J, Liu Q and He J 2017 Nano Lett. 17 1065
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[3] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[8] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[9] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[10] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[11] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[12] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[13] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[14] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[15] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
No Suggested Reading articles found!