CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers |
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲) |
School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract As an industry accepted storage scheme, hafnium oxide (HfOx) based resistive random access memory (RRAM) should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfOx/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfOx/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current (< 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole-Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120 ℃ for the single HfOx layer RRAM, the HfOx/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures (up to 180 ℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfOx/ZnO double-layer exhibits 10-year data retention @85 ℃ that is helpful for the practical applications in RRAMs.
|
Received: 23 March 2017
Revised: 15 May 2017
Accepted manuscript online:
|
PACS:
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
77.80.Fm
|
(Switching phenomena)
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006003 and 61674038), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2015J01249 and 2010J05134), the Science Foundation of Fujian Education Department of China (Grant No. JAT160073), and the Science Foundation of Fujian Provincial Economic and Information Technology Commission of China (Grant No. 83016006). |
Corresponding Authors:
Yun-Feng Lai
E-mail: yunfeng.lai@fzu.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲) Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers 2017 Chin. Phys. B 26 087305
|
[1] |
Chang T C, Chang K C, Tsai T M, Chu T J and Sze S M 2016 Mater. Today 19 254
|
[2] |
Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A and Hwang C S 2012 Rep. Prog. Phys. 75 076502
|
[3] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[4] |
Yang J J, Inoue I H, Mikolajick T and Hwang C S 2012 MRS Bull. 37 131
|
[5] |
Yu S, Chen H Y, Gao B, Kang J and Wong H S P 2013 ACS Nano 7 2320
|
[6] |
Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
|
[7] |
Deng N, Pang H and Wu W 2014 Chin. Phys. B 23 107306
|
[8] |
Jiang R, Du X H, Han Z Y and Sun W D 2015 Acta Phys. Sin. 64 207302 (in Chinese)
|
[9] |
Gao B, Sun B, Zhang H W, Liu L F, Liu X Y, Han R Q, Kang J F and Yu B 2009 IEEE Electron Dev. Lett. 30 1326
|
[10] |
Gao B, Kang J F, Liu L F, Liu X Y and Yu Bin 2011 Appl. Phys. Lett. 98 232108
|
[11] |
Burr G W, Shenoy R S, Virwani K, Narayanan P, Padilla A, Kurdi B and Hwang H 2014 J. Vac. Sci. Technol. B 32 23
|
[12] |
Hsu C W, Hou T H, Chen M C, Wang I T and Lo C L 2013 IEEE Electron Dev. Lett. 34 885
|
[13] |
Gao B, Bi Y, Chen H Y, Liu R, Huang P, Chen B, Liu L, Liu X, Yu S, Wong H S P and Kang J 2014 ACS Nano 8 6998
|
[14] |
Shang J, Liu G, Yang H, Zhu X, Chen X, Tan H, Hu B, Pan L, Xue W and Li R W 2014 Adv. Funct. Mater. 24 2171
|
[15] |
Puglisi F M, Qafa A and Pavan P 2015 IEEE Electron Dev. Lett. 36 244
|
[16] |
Walczyk C, Walczyk D, Schroeder T, Bertaud T, Sowinska M, Lukosius M, Fraschke M, Wolansky D, Tillack B, Miranda E and Wenger C 2011 IEEE Trans. Electron Dev. 58 3124
|
[17] |
Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509
|
[18] |
Ninomiya T, Wei Z, Muraoka S, Yasuhara R, Katayama K and Takagi T 2013 IEEE Trans. Electron Dev. 60 1384
|
[19] |
Cabout T, Vianello E, Jalaguier E, Grampeix H, Molas G, Blaise P, Cueto O, Guillermet M, Nodin J F, Perniola L, Blonkowski S, Jeannot S, Denorme S, Candelier P, Bocquet M and Muller C 2014 Proceedings of the IEEE 6th International Memory Workshop (IMW), May 18-21 Taipei, Taiwan, pp. 1-4
|
[20] |
Chand U, Huang K C, Huang C Y, Ho C H, Lin C H and Tseng T Y 2015 J. Appl. Phys. 117 184105
|
[21] |
Chen Y Y, Goux L, Clima S, Govoreanu B, Degraeve R, Kar G S, Fantini A, Groeseneken G, Wouters D J and Jurczak M 2013 IEEE Trans. Electron Dev. 60 1114
|
[22] |
Chand U, Huang C Y and Tseng T Y 2014 IEEE Electron Dev. Lett. 35 1019
|
[23] |
Simanjuntak F M, Panda D, Tsai T L, Lin C A, Wei K H and Tseng T Y 2015 J. Mater. Sci. 50 6961
|
[24] |
Simanjuntak F M, Panda D, Tsai T L, Lin C A, Wei K H and Tseng T Y 2015 Appl. Phys. Lett. 107 033505
|
[25] |
Yu H, Kim M, Kim Y, Lee J, Kim K K, Choi S J and Cho S 2014 Electron. Mater. Lett. 10 321
|
[26] |
Kim A, Song K, Kim Y and Moon J 2011 ACS Appl. Mater. Interfaces 3 4525
|
[27] |
Yan X B, Hao H, Chen Y F, Li Y C and Banerjee W 2014 Appl. Phys. Lett. 105 093502
|
[28] |
Lai Y F, Zeng Z C, Liao C H, Cheng S Y, Yu J L, Zheng Q and Lin P J 2016 Appl. Phys. Lett. 109 063501
|
[29] |
Chen Q, Yang M, Feng Y P, Chai J W, Zhang Z, Pan J S and Wang S J 2009 Appl. Phys. Lett. 95 162104
|
[30] |
Lu H L, Yang M, Xie Z Y, Geng Y, Zhang Y, Wang P F, Sun Q Q, Ding S J and Zhang D W 2014 Appl. Phys. Lett. 104 161602
|
[31] |
Lai Y F, Xin P C, Cheng S Y, Yu J L and Zheng Q 2015 Appl. Phys. Lett. 106 031603
|
[32] |
Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168
|
[33] |
Arslan E, Butun S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
|
[34] |
Chen T J and Kuo C L 2014 Microelectron. Reliab. 54 1119
|
[35] |
Hildebrandt E, Kurian J, Muller M M, Schroeder T, Kleebe H J and Alff L 2011 Appl. Phys. Lett. 99 112902
|
[36] |
Liu L S, Mei Z X, Tang A H, Azarov A, Kuznetsov A, Xue Q K and Du X L 2016 Phys. Rev. B 93 235305
|
[37] |
Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J and Hwang H 2011 IEEE Electron Dev. Lett. 32 476
|
[38] |
Wu M C, Lin Y W, Jang W Y, Lin C H and Tseng T Y 2011 IEEE Electron Dev. Lett. 32 1026
|
[39] |
Park J, Jo M, Bourim E M, Yoon J, Seong D J, Lee J, Lee W and Hwang H 2010 IEEE Electron Dev. Lett. 31 485
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|