Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087305    DOI: 10.1088/1674-1056/26/8/087305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers

Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲)
School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
Abstract  

As an industry accepted storage scheme, hafnium oxide (HfOx) based resistive random access memory (RRAM) should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfOx/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfOx/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current (< 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole-Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120 ℃ for the single HfOx layer RRAM, the HfOx/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures (up to 180 ℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfOx/ZnO double-layer exhibits 10-year data retention @85 ℃ that is helpful for the practical applications in RRAMs.

Keywords:  resistive random access memory (RRAM)      thermal stability      data retention      double layer  
Received:  23 March 2017      Revised:  15 May 2017      Accepted manuscript online: 
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  77.80.Fm (Switching phenomena)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61006003 and 61674038), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2015J01249 and 2010J05134), the Science Foundation of Fujian Education Department of China (Grant No. JAT160073), and the Science Foundation of Fujian Provincial Economic and Information Technology Commission of China (Grant No. 83016006).

Corresponding Authors:  Yun-Feng Lai     E-mail:  yunfeng.lai@fzu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲) Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers 2017 Chin. Phys. B 26 087305

[1] Chang T C, Chang K C, Tsai T M, Chu T J and Sze S M 2016 Mater. Today 19 254
[2] Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A and Hwang C S 2012 Rep. Prog. Phys. 75 076502
[3] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[4] Yang J J, Inoue I H, Mikolajick T and Hwang C S 2012 MRS Bull. 37 131
[5] Yu S, Chen H Y, Gao B, Kang J and Wong H S P 2013 ACS Nano 7 2320
[6] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
[7] Deng N, Pang H and Wu W 2014 Chin. Phys. B 23 107306
[8] Jiang R, Du X H, Han Z Y and Sun W D 2015 Acta Phys. Sin. 64 207302 (in Chinese)
[9] Gao B, Sun B, Zhang H W, Liu L F, Liu X Y, Han R Q, Kang J F and Yu B 2009 IEEE Electron Dev. Lett. 30 1326
[10] Gao B, Kang J F, Liu L F, Liu X Y and Yu Bin 2011 Appl. Phys. Lett. 98 232108
[11] Burr G W, Shenoy R S, Virwani K, Narayanan P, Padilla A, Kurdi B and Hwang H 2014 J. Vac. Sci. Technol. B 32 23
[12] Hsu C W, Hou T H, Chen M C, Wang I T and Lo C L 2013 IEEE Electron Dev. Lett. 34 885
[13] Gao B, Bi Y, Chen H Y, Liu R, Huang P, Chen B, Liu L, Liu X, Yu S, Wong H S P and Kang J 2014 ACS Nano 8 6998
[14] Shang J, Liu G, Yang H, Zhu X, Chen X, Tan H, Hu B, Pan L, Xue W and Li R W 2014 Adv. Funct. Mater. 24 2171
[15] Puglisi F M, Qafa A and Pavan P 2015 IEEE Electron Dev. Lett. 36 244
[16] Walczyk C, Walczyk D, Schroeder T, Bertaud T, Sowinska M, Lukosius M, Fraschke M, Wolansky D, Tillack B, Miranda E and Wenger C 2011 IEEE Trans. Electron Dev. 58 3124
[17] Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509
[18] Ninomiya T, Wei Z, Muraoka S, Yasuhara R, Katayama K and Takagi T 2013 IEEE Trans. Electron Dev. 60 1384
[19] Cabout T, Vianello E, Jalaguier E, Grampeix H, Molas G, Blaise P, Cueto O, Guillermet M, Nodin J F, Perniola L, Blonkowski S, Jeannot S, Denorme S, Candelier P, Bocquet M and Muller C 2014 Proceedings of the IEEE 6th International Memory Workshop (IMW), May 18-21 Taipei, Taiwan, pp. 1-4
[20] Chand U, Huang K C, Huang C Y, Ho C H, Lin C H and Tseng T Y 2015 J. Appl. Phys. 117 184105
[21] Chen Y Y, Goux L, Clima S, Govoreanu B, Degraeve R, Kar G S, Fantini A, Groeseneken G, Wouters D J and Jurczak M 2013 IEEE Trans. Electron Dev. 60 1114
[22] Chand U, Huang C Y and Tseng T Y 2014 IEEE Electron Dev. Lett. 35 1019
[23] Simanjuntak F M, Panda D, Tsai T L, Lin C A, Wei K H and Tseng T Y 2015 J. Mater. Sci. 50 6961
[24] Simanjuntak F M, Panda D, Tsai T L, Lin C A, Wei K H and Tseng T Y 2015 Appl. Phys. Lett. 107 033505
[25] Yu H, Kim M, Kim Y, Lee J, Kim K K, Choi S J and Cho S 2014 Electron. Mater. Lett. 10 321
[26] Kim A, Song K, Kim Y and Moon J 2011 ACS Appl. Mater. Interfaces 3 4525
[27] Yan X B, Hao H, Chen Y F, Li Y C and Banerjee W 2014 Appl. Phys. Lett. 105 093502
[28] Lai Y F, Zeng Z C, Liao C H, Cheng S Y, Yu J L, Zheng Q and Lin P J 2016 Appl. Phys. Lett. 109 063501
[29] Chen Q, Yang M, Feng Y P, Chai J W, Zhang Z, Pan J S and Wang S J 2009 Appl. Phys. Lett. 95 162104
[30] Lu H L, Yang M, Xie Z Y, Geng Y, Zhang Y, Wang P F, Sun Q Q, Ding S J and Zhang D W 2014 Appl. Phys. Lett. 104 161602
[31] Lai Y F, Xin P C, Cheng S Y, Yu J L and Zheng Q 2015 Appl. Phys. Lett. 106 031603
[32] Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168
[33] Arslan E, Butun S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
[34] Chen T J and Kuo C L 2014 Microelectron. Reliab. 54 1119
[35] Hildebrandt E, Kurian J, Muller M M, Schroeder T, Kleebe H J and Alff L 2011 Appl. Phys. Lett. 99 112902
[36] Liu L S, Mei Z X, Tang A H, Azarov A, Kuznetsov A, Xue Q K and Du X L 2016 Phys. Rev. B 93 235305
[37] Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J and Hwang H 2011 IEEE Electron Dev. Lett. 32 476
[38] Wu M C, Lin Y W, Jang W Y, Lin C H and Tseng T Y 2011 IEEE Electron Dev. Lett. 32 1026
[39] Park J, Jo M, Bourim E M, Yoon J, Seong D J, Lee J, Lee W and Hwang H 2010 IEEE Electron Dev. Lett. 31 485
[1] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[2] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[3] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[4] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[5] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[6] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[7] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
[8] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[9] Synthesis of thermally stable HfOxNy as gate dielectric for AlGaN/GaN heterostructure field-effect transistors
Tong Zhang(张彤), Taofei Pu(蒲涛飞), Tian Xie(谢天), Liuan Li(李柳暗), Yuyu Bu(补钰煜), Xiao Wang(王霄), Jin-Ping Ao(敖金平). Chin. Phys. B, 2018, 27(7): 078503.
[10] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[11] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[12] Reversal current observed in micro-and submicro-channel flow under non-continuous DC electric field
Yi-fei Duan(段一飞), Hong-wei Ma(马宏伟), Ze-yang Gao(高泽阳), Kai-ge Wang(王凯歌), Wei Zhao(赵伟), Dan Sun(孙聃), Gui-ren Wang(王归仁), Jun-jie Li(李俊杰), Jin-tao Bai(白晋涛), Chang-zhi Gu(顾长志). Chin. Phys. B, 2017, 26(6): 068203.
[13] Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution
Chu-Yu Zhong(钟础宇), Xing Zhang(张星), Di Liu(刘迪), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(6): 064204.
[14] High thermal stability of diamond-cBN-B4C-Si composites
Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(1): 018102.
[15] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
No Suggested Reading articles found!